METALLURGICAL TESTING OF THE LAS MINAS DEPOSIT

SOURCE EXPLORATION CORPORATION VERACRUZ, MEXICO

KM4508

June 24, 2015

ALS METALLURGY KAMLOOPS

ADDRESS 2957 Bowers Place, Kamloops, BC V1S 1W5 | PHONE +1 250 828 6157 | FAX +1 250 828 6159 ALS CANADA LTD Part of the ALS Group

INDEX

PAGE

			3. 1
1.0	Intro	oduction	1
2.0	Phys	ical Characterization	3
	2.1	Chemical Content	3
	2.2	Comminution Testing	4
3.0	Trac	e Mineral Searches	5
4.0	Meta	allurgical Testing	7
	4.1	Rougher Test Results	7
	4.2	Cleaner Test Results	9
	4.3	Locked Cycle Test Results	11
	4.4	Magnetic Separation	13
5.0	Cond	clusions and Recommendations	14

Calvin Chan, EIT Project Metallurgist

Pert A

Robert Sloan, P. Eng. VP – ALS Metallurgy North America

SI 21 June 24, 2015 R. P. SLOAN # 40376 RITISH UN GINE

June 24, 2015 KM4508

Electronic Distribution: Matthew Liard, Source Exploration Corporation, Vancouver, BC Brian Robertson, Source Exploration Corporation, Vancouver, BC

<u>1.0</u> Introduction

Source Exploration Corporation is carrying out a preliminary test program on the skarn and epithermal copper-gold-silver Las Minas project, located in the state of Veracruz, 270 kilometers east of Mexico City.

Fifty-nine kilograms of half core sample was received from the Las Minas project for use in this study. From this material, a composite designated as the ED Composite was constructed.

The principle objectives of this laboratory test work, as defined by Mr. Matthew Liard, Senior Geologist of Source Exploration Corporation, in March 2015 were to:

- Assess the chemical and mineralogical characteristics of the ED Composite.
- Complete a Bond abrasion and a Bond ball mill work index test on the ED Composite.
- Complete Davis tube magnetic separation tests on the sample.
- Evaluate metallurgical performance of the composite by completing preliminary flowsheet development testing.

The program began mid-April 2015 and was completed by mid-June 2015. Following the test work, preparation of this technical report commenced. The following technical brief summarizes only the key points of the program. All of the test data generated by this program can be reviewed in a series of appendices attached to this brief. The appendices are arranged as follows:

> Appendix I - Sample Origin Appendix II - Flotation Test Data Appendix III - Particle Sizing Data Appendix IV - Comminution Data Appendix V - Special Assay Data Appendix VI - Mineralogical Data

2.0 Physical Characterization

There are several inherent characteristics of an ore that will predispose the process design required to extract and concentrate minerals of value. The chemical content and hardness test data will dictate the crushing and grinding requirements and the configuration of the flotation process required. These characteristics are discussed in the following subsections.

<u>2.1</u> <u>Chemical Content</u>

The chemical composition of the ED Composite was determined using standard analytical techniques. The resulting data is summarized in Table 1.

 <u>TABLE 1</u>

 CHEMICAL COMPOSITION OF THE ED COMPOSITE

Sample	Assay – percent or g/tonne								
	Cu	CuOx	CuCN	CuRes	Fe	S	Ag	Au	
ED Composite	2.16	0.099	0.16	1.90	31.5	2.81	7	1.32	

Notes: a) Duplicate head assay data is located in Appendix V.

b) The copper oxide (CuOx) assay represents copper soluble in weak acid; the copper cyanide (CuCN) assay represents copper soluble in cyanide; residual copper (CuRes) was the calculated copper remaining in the sample after CuOx and CuCN assays.

c) Ag and Au are in g/tonne; all other assays are in percent.

The ED Composite measured a copper content of about 2.2 percent. The copper oxide assay indicated little oxide copper mineralization in the feed; however, the copper cyanide assay indicate the presence secondary or native copper in this sample. Gold grade measured about 1.3 g/tonne, while silver content measured 7 g/tonne. Sulphur content was relatively low in the feed indicating low pyrite levels. Given the high iron content measured at about 31.5 percent, and low Sulphur content, high iron oxide mineral content is likely.

2.2 Comminution Testing

A Bond abrasion test was performed on the ED Composite, which measured about 0.14, indicating that the sample was mildly abrasive. A single Bond ball mill work index test was conducted on the ED Composite using a standard closing screen size of 106μ m. The resulting index measured 13.3 kWh/tonne and, in our experience, this indicates that the composite would be considered moderately soft from a ball milling perspective^{*}.

TABLE 2 SUMMARY OF COMMINUTION TEST WORK

Sampla	Bond Ball Work Index	Abrasion Index		
Sample	kWh/tonne	A _i		
ED Composite	13.3	0.14		

<u>QEMSCAN BACKSCATTER IMAGE</u> ED COMPOSITE, <106>38µm Fraction

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalopyrite, BiM-Bismuth Tellurium Bearing Mineral, Py-Pyrite, FeOx-Iron Oxides, Gn-Gangue.
b) Full TMS Data is located in Appendix VI.

^{*} Detailed comminution test results are located in Appendix IV.

3.0 Trace Mineral Searches

QEMSCAN Trace Mineral Searches (TMS) for gold was performed on three size fractions of the ED Composite, which had been ground to a nominal 146 μ m K₈₀. A summary of the results for gold analysis conducted are shown in Figure 1.

The average grain size of the gold bearing particle occurrences in the rougher feed was very fine, measuring an average diameter of 8, 6 and 4 μ m in the +106, -106 to +38, and -38 μ m fractions, respectively. These fine particles may be difficult to recover through means of gravity concentration. Gold particles that were as large as 31 μ m were observed; these larger particles may be recoverable through gravity concentration.

Gold particle occurrences in the coarse $+106\mu$ m fraction were located predominantly in multiphase particles. The multiphase particles were primarily composed of non-sulphide gangue, iron oxides, pyrite and chalcopyrite in which gold particles comprised a low percentage of the particle surface area. Particles with high gangue and pyrite content would not be expected to be well recovered to a sulphide flotation concentrate^{*}.

The gold occurrences in the intermediate -106 to $+38\mu$ m fraction contained gold particles that were mostly in binary with chalcopyrite or in multiphase forms. Most of the gold occurrences were identified to be in association with chalcopyrite, and would likely be recovered into the rougher concentrate.

The gold occurrences in the -38µm fraction were identified as liberated gold or electrum particles or in binary with chalcopyrite, pyrite, non-sulphide gangue and multiphase particles. The liberated gold and gold in binary form with chalcopyrite particles should be recoverable to a flotation concentrate, while the gold particles in binary form with pyrite and non-sulphide gangue particles would not likely be recoverable in flotation due to the small area of gold in those particles.

^{*} The recovery of particles with high pyrite would depend on the selectivity of the flotation circuit towards pyrite.

FIGURE 1 THE OVERALL STATUS OF GOLD IN THE ED COMPOSITE

>106µm Fraction

<106>38µm Fraction

<38µm Fraction

Note: Lib - Liberated Gold particle; Cp - Gold particle with Chalcopyrite;

Py - Gold particle with Pyrite; Gn - Gold particle with Non-sulphide Gangue;

FeOx - Gold particle with Iron Oxides; MP - Gold particle in Multiphase.

4.0 Metallurgical Testing

A series of laboratory flotation tests were performed in this preliminary test program. Rougher tests were conducted to evaluate primary grind sizing, reagent requirements and pH. Batch cleaner tests were performed to assess regrind sizings and concentrate production potential. A single locked cycle test was performed to determine metallurgical performance under closed circuit conditions.

4.1 Rougher Test Results

A total of six rougher flotation tests were performed in this program. Primary grind sizings of 146 and 189 μ m K₈₀ were investigated. A pH of 9, adjusted by lime, was tested and compared to a single test at natural pH. Potassium Amyl Xanthate (PAX) was used as the copper collector. Methyl Isobutyl Carbonyl (MIBC) was used as the frother. Figure 2 displays the flowsheet schematic used, along with a summary of test conditions and graphical representation of test results.

Addition of lime into the primary grinding mill appeared to improve copper flotation kinetics at equivalent PAX dosage. Lower copper recoveries were observed at PAX dosages of 40 g/tonne or lower. Mineralogical assessment by optical microscope of the rougher tail indicated liberated chalcopyrite was lost to rougher tails at lower PAX dosages. As a result, PAX dosages of 120 g/tonne were used throughout rougher testing^{*}. Increasing primary grind sizing from 146 to 189 μ m K₈₀ had a negative impact on copper recovery. Based on this result, primary grind sizing coarser than 146 μ m K₈₀ would not be recommended.

A rougher test using a primary grind sizing of $146\mu m K_{80}$, pH of 9, and 80 g/tonne PAX produced copper, gold and silver recoveries into the rougher concentrate of 97, 91 and 89 percent, respectively.

^{*} Late into the test program, testing with 80 g/tonne PAX was performed due to cleaner performance; this is discussed in section 4.2.

FIGURE 2 ROUGHER FLOTATION

|--|

Stane	лH	Redox	Reagent Addition - g/tonne		
Oldge	pri	mV	Lime	PAX	
Primary Grind	8.0-9.3	-74 to +164	0-150	-	
Bulk Rougher	8.2-9.3	-94 to +136	-	20-120	

Note: Redox was measured with a Pt Ag/AgCl electrode and values are unadjusted against SHE.

Note: Detailed conditions and results are provided in Appendix II.

4.2 Cleaner Test Results

Six laboratory batch cleaner tests were performed with the ED Composite. These tests allowed preliminary estimations of metallurgical performance using basic flowsheet conditions. The tests investigated regrind sizings in the cleaner stages and their effect on metallurgical performance. All cleaner tests were conducted at a primary grind sizing of 146 μ m K₈₀ and regrind sizes of 9 to 70 μ m K₈₀.

A schematic of the test flowsheet, a summary of test conditions and a graphical representation of the test data are presented in Figure 3.

Cleaner tests were conducted on a range of regrind sizings. A trend was established between finer regrind sizing leading to higher copper concentrate grades but lower gold recoveries.

High PAX dosage in the rougher circuit affected frother conditions in the cleaner circuit. It was difficult to maintain a stable froth using MIBC; therefore, a stronger polyglycol frother, Polyfroth W34, was utilized in conjunction with MIBC to assist with froth stability.

The lower PAX dosage of 80 g/tonne was chosen to be the reference test for locked cycle testing due to better froth stability and only having to use MIBC to keep a stable froth. The reference test, at a primary grind sizing of about 146 μ m K₈₀, and a regrind sizing of about 70 μ m K₈₀, a bulk cleaner concentrate was produced with copper, gold and silver recoveries measuring about 94, 84, and 78 percent, respectively. These metals graded 23 percent, 13 g/tonne, and 58 g/tonne for copper, gold and silver, respectively.

Flowsheet Schematic

Test Conditions

Stage	лH	Redox	Reagent Addition - g/tonne			
Olage	pri	mV	Lime	PAX		
Primary Grind	9.0-9.2	-68 to +190	150	-		
Bulk Rougher	8.7-9.2	-104 to +120	-	80-120		
Regrind	8.6-9.3	-52 to +155	50	-		
Bulk Cleaner	8.3-9.3	-66 to +176	-	13-30		

Note: Redox was measured with a Pt Ag/AgCl electrode and values are unadjusted against SHE.

Notes: a) Tests 8, 9, 10, 13, and 14 used a rougher PAX dosage of 120 g/tonne. Test 16 used a rougher PAX dosage of 80 g/tonne. b) Detailed test conditions and results are located in Appendix II.

<u>4.3</u> <u>Locked Cycle Test Results</u>

A single locked cycle test was performed on the ED Composite. This test provides an estimation of performance under closed circuit conditions. The test was conducted at a primary grind sizing of 146 μ m K₈₀, a regrind sizing of about 60 μ m K₈₀ and at pH 9, adjusted by lime. Potassium Amyl Xanthate (PAX) was used as the copper collector at 80 g/tonne to mitigate froth stability issues in the cleaning stage with higher PAX dosages. Methyl Isobutyl Carbonyl (MIBC) and Polyfroth W34 were used as the frothers. These conditions were selected to promote higher gold recoveries and to lower the amount of PAX in the rougher circuit for froth stability. A schematic of the test flowsheet and a summary of test conditions are presented in Figure 4.

Higher recoveries at slightly lower copper concentrate grade were recorded in closed circuit testing than measured in open circuit cleaner batch testing. Overall, about 95 percent of the copper, 89 percent of the gold and 84 percent of the silver was recovered to a bulk concentrate grading about 22 percent copper, 13.4 g/tonne gold and 57 g/tonne silver.

The froth appeared to be over-collected^{*} after the third cycle and a stable froth was difficult to maintain until the addition of the strong frother W34 mitigated the issue. Further testing would be needed to optimize this flowsheet.

Although higher concentrate grades might be possible with high pH in the cleaning stage, higher gold losses might occur.

^{*} Over-collection: Addition of an excess amount of collector in flotation, where a stable froth cannot be maintained to facilitate efficient mineral recovery.

FIGURE 4 LOCKED CYCLE TEST RESULTS

Flowsheet Schematic

Test Conditions

Stade	ъН	Redox	Reagent Addition - g/tonne			
Slage	рп	mV	Lime	PAX		
Primary Grind	9.1	+107	150	-		
Bulk Rougher	8.7-9.1	+38 to +101	-	80		
Regrind	9.1	+125	50	-		
Bulk Cleaner	8.6-9.1	+96 to 126	-	14		

Note: Redox was measured with a Pt Ag/AgCl electrode and values are unadjusted against SHE.

Locked Cycle Tes	t Results Summary
------------------	-------------------

Product	Weight	Assay - percent or g/tonne					Distribution - percent				:
Troduct	%	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
CYCLES IV and V											
Flotation Feed	100	2.43	31.6	3.16	7	1.59	100	100	100	100	100
Bulk Con	10.4	22.3	30.4	28.7	57	13.4	95.4	10.0	94.9	84.2	88.8
Bulk 1st CInr Tail	6.7	0.86	25.4	1.23	10	1.16	2.4	5.4	2.6	9.9	4.9
Bulk Ro Tail	82.9	0.06	32.2	0.09	1	0.14	2.2	84.6	2.5	5.9	7.1

Notes: a) Au and Ag assay values are reported in g/tonne, all others in percent. b) Detailed conditions and results are located in Appendix II.

<u>4.4</u> <u>Magnetic Separation</u>

The ED Composite head, rougher tail, and cleaner concentrate samples produced during flotation testing were submitted for magnetic separations via Davis Tube to test the viability of producing a magnetite concentrate and/or to remove magnetic diluents from the concentrate. Detailed results can be found in Appendix II.

A Davis tube test at a magnetic field strength of 4,000 gauss was conducted on a pulverized head sample of the ED Composite. The test produced a magnetic concentrate grading about 68 percent iron with an iron recovery of about 60 percent. About 3 percent of the copper and 16 percent of the gold from the feed was measured in the magnetic concentrate, which would be considered as copper and gold losses.

The Davis tube test at a magnetic field strength of 4,000 gauss conducted on a bulk rougher tail from a standard pH 9, 120 g/tonne PAX, 146 μ m K₈₀ primary grind rougher test produced a magnetic concentrate grading 67 percent iron, with 65 percent of the iron in the tail recovered. This would be considered a high grade magnetic concentrate, which may require little further treatment to meet saleable grade requirements.

Cleaner concentrates at regrind sizings of 48 and 36μ m K₈₀ had measured high iron values. Davis tube magnetic separation at a magnetic field strength of 1,000 gauss was employed in an attempt to reduce the iron content and to increase copper concentrate grade. Copper concentrate grade increased by 1 or 2 percentage points, with a commensurate loss of between 2 and 3 percent copper recovery loss in these tests. Gold losses to the magnetite concentrate were not measured due to insufficient sample mass in the magnetic concentrate to assay for gold.

<u>5.0</u> Conclusions and Recommendations

A limited program of metallurgical testing was completed on a single coppergold-silver sample from the Las Minas project identified as the "ED Composite". The metallurgical response of the ED Composite to basic flotation processing was tested and promising results were obtained. However, further testing to optimize Potassium Amyl Xanthate (PAX) dosage to avoid over-collection is recommended^{*}.

The ED Composite was analyzed using both chemical and mineralogical techniques. The sample contained approximately 2.2 percent copper, 1.3 g/tonne gold and 7 g/tonne silver, as well as high iron content measuring 31.5 percent.

Trace Mineral Search (TMS) protocols using QEMSCAN was used to measure and identify the gold particles found in the ED Composite at a primary grind sizing of 146 μ m K₈₀ in three size fractions. The gold occurrences averaged about 6 μ m in diameter; it would be unlikely to recover these fine gold bearing particles through the use of gravity concentration. Larger gold particles up to 31 μ m in diameter were located, and recovery of these coarser particles may be possible through gravity concentration. The gold occurrences in this sample were typically measured in multiphase form with non-sulphide gangue, iron oxides, pyrite and chalcopyrite and in binary form with pyrite, non-sulphide gangue, or chalcopyrite; or liberated. Gold occurrences associated with chalcopyrite and liberated gold would most likely be recovered via flotation whereas gold associated with nonsulphide gangue, iron oxide minerals, and to a lesser degree gold associated with pyrite would more likely be lost to tails.

^{*} Over-collection: Addition of an excess amount of collector in flotation, where a stable froth cannot be maintained to facilitate efficient mineral recovery.

Flotation test data determined that primary grind sizing had a measureable effect on rougher copper recovery. Using similar conditions, copper rougher recovery averaged about 95 percent at 146 μ m K₈₀, while at a coarser grind of 189 μ m K₈₀, copper recovery decreased to 86 percent. Assessment by optical microscope of a rougher tail from a rougher test with lower PAX dosage indicated that most of the copper lost was seen as liberated chalcopyrite. High PAX dosages of at least 80 g/tonne were needed for high copper recoveries. High sulphur recoveries indicating high pyrite recoveries were also recorded for the rougher stage.

A number of cleaner tests at PAX dosages between 80 and 120 g/tonne with regrind sizings ranging from 9 to 70 μ m K₈₀ were conducted to optimize overall performance. The trend of increasing copper performance with decreasing regrind size was observed, and vice versa with gold. With the current flowsheet, coarser regrind sizings would lead to higher gold recoveries. This is suspected to be related to gold measured with non-sulphide gangue, iron oxides, and pyrite in the QEMSCAN TMS analysis. Gold was located in all minerals, thus rejecting of pyrite and non-sulphide gangue and low grade copper sulphide binaries lowers gold recovery as well.

Excellent recoveries were measured in the locked cycle test. At a regrind sizing of 60μ m K₈₀, PAX, and a pH of 9: about 95 percent of the copper, 88 percent of the gold and 84 percent of the silver were recovered into a bulk concentrate grading about 22 percent copper, 13 g/tonne gold and 57 g/tonne silver.

By the third cycle in the locked cycle test, the froth stability was difficult to maintain due to over-collection. The addition of the strong frother W34 mitigated this situation. Collector dosages must be refined in the flowsheet for successful plant performance. Froth instability was witnessed in cleaner flotation both in the batch cleaner testing and locked cycle test. The low grade of copper in the cycle test concentrates indicated insufficient control of pyrite and non-sulphide gangue flotation, which diluted the concentrate as a result. Further testing would be required to optimize performance of the circuit.

Davis tube magnetic separation was conducted on a pulverized ED Composite head to assess magnetic iron removal. A high iron grade was measured in the magnetic concentrate at 68 percent, although copper and gold recoveries to the magnetic concentrate were significant at 3 and 16 percent, respectively and would represent losses. Another Davis tube magnetic separation was conducted on the rougher tail of a standard rougher test. A high iron grade of 67 percent with an iron recovery of 65 percent was recorded in the magnetic concentrate. Davis tube magnetic separation was also attempted on cleaner concentrates to increase copper grade. In these tests, copper grades increased by 1 or 2 percentage points with a commensurate copper recovery loss of 2 or 3 percent. Gold recovery and grade was unknown due to insufficient sample mass*.

In the next phase of testing, further optimization of the rougher circuit is recommended in attempt to maintain both copper and gold performance. An optimized amount of collector should be tested in the rougher circuit. Detailed magnetic separation testing on the rougher tailings should be tested to test viability of producing iron concentrate. A determination of the minor elements in the copper concentrate to scan for deleterious elements should be conducted. A full mineralogical analysis using the QEMSCAN (Particle Mineral Analysis) should be conducted on a representative feed sample to provide mineral composition, mineral liberation and grade limiting curves. Following this, samples of varying geological origin and feed grades should be tested to determine the variation in metallurgical performance across the deposit. Samples representing expected plant feed grades and significant geological lithology types should be investigated as a priority.

^{*} Insufficient magnetic concentrate mass for gold assays.

APPENDIX I – KM4508

SAMPLE ORIGIN

<u>1.0</u> Sample Origin

A single shipment was received at ALS Metallurgy Kamloops on April 16, 2015. This shipment consisted of 6 samples in half core form weighing a total of 59 kilograms. These samples were reportedly from the Las Minas project located in the Mexican state of Veracruz, about 270 kilometers east of Mexico City.

A single composite named the ED Composite was constructed from the samples as instructed by the client. The mass and identification of each sample that was received is presented in Table I-1.

TABLE I-1 MASS AND IDENTIFICATION OF METALLURGICAL SAMPLES RECEIVED April 16, 2015

Sample ID	Weight - kilograms	Sample Form
ED-9 4553	8.8	1/2 core
ED-9 4557	10.2	1/2 core
ED-8 4499	10.4	1/2 core
ED-15 4749	11.6	1/2 core
ED-9 4552	7.9	1/2 core
ED-9 4556	10.1	1/2 core

Duplicate and representative head cuts were removed for assay from the composite. The remainder was homogenized and rotary split into 2 kilogram charges for subsequent tests. All test charges were sealed in plastic bags under nitrogen and stored at -10°C. The average head assays for the ED Composite are provided in Table I-2.

Sampla	Assay – percent or g/tonne									
Sample	Cu	CuOx	CuCN	CuRes	Fe	S	Ag	Au		
ED Composite	2.16	0.099	0.16	1.77	31.5	2.81	7	1.32		

TABLE I-2 CHEMICAL COMPOSITION OF THE ED COMPOSITE

Notes: a) Duplicate head assay data is located in Appendix V.

b) The copper oxide assay represents copper soluble in weak acid; the copper cyanide assay represents copper soluble in cyanide.

c) Ag and Au are in g/tonne; all other assays are in percent.

A cut of the sample was sent to ALS Minerals for a 48 element ICP scan. The certificate detailing the results is located in Appendix V.

Samples would be stored for a duration of 12 months and would be disposed of at the end of that period unless alternate arrangements are made.

APPENDIX II - KM4508

METALLURGICAL TEST DATA

INDEX

<u>TEST</u>		<u>PAGE</u>
1	Rougher Test – ED Composite	1
2	Rougher Test – ED Composite	3
3	Rougher Test – ED Composite	5
4	Rougher Test – ED Composite	7
5	Davis Tube Test – ED Composite	9
6	Rougher Test – ED Composite	11
7	Davis Tube Test – Test 04 Bulk Rougher Tail	13
8	Cleaner Test – ED Composite	15
9	Cleaner Test – ED Composite	17
10	Cleaner Test – ED Composite	19
11	Davis Tube Test – Test 09 Bulk Concentrate	21
12	Davis Tube Test – Test 10 Bulk Concentrate	23
13	Cleaner Test – ED Composite	25
14	Cleaner Test – ED Composite	
15	Rougher Test – ED Composite	
16	Cleaner Test – ED Composite	
17	Locked Cycle Test – ED Composite	

DATE:	April 29, 2015
PROJECT NO:	KM4508-01
PURPOSE:	Preliminary Rougher Test.
PROCEDURE:	Perform a one product rougher test.
FEED:	2 kg of ED Composite ore ground to a nominal 146 μ m K_{80}.

Stage	Reager	nts Added	g/tonne	Ti	me (minute	s)	рН	Redox	
Oldge	PAX	PAX MIBC		Grind	Cond. Float		pri	Redex	
Primary Grind				15			8.0	9	
Bulk CIRCUIT:									
Rougher 1	30		8		1	2	8.2	-58	
Rougher 2	40		8		1	2	8.3	11	
Rougher 3	30		8		1	2	8.4	2	
Rougher 4	20		8		1	2	8.3	-9	

Flotation Data	Rougher		
Flotation Machine	D2A		
Cell Size in liters	4.4		
Aspiration	Air		
Water Type	Fresh		
Impeller Speed in rpm	1100		

Grinding Data	Primary Grind					
Mill:	M4-Mild					
Charge/Material:	20kg-Mild					
Water:	1000 ml					

Product	We	eight		Assay	- percer	nt or g/t		Distribution - percent				
	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Ro Con 1	7.8	155.8	16.8	29.7	21.9	57	17.2	58.4	7.3	62.1	63.3	82.5
Bulk Ro Con 2	4.7	94.3	10.3	27.3	11.2	26	3.05	21.7	4.1	19.2	17.5	8.9
Bulk Ro Con 3	1.8	36.3	8.00	25.7	8.64	18	1.65	6.5	1.5	5.7	4.7	1.8
Bulk Ro Con 4	0.9	18.6	7.80	25.7	8.30	18	1.72	3.2	0.8	2.8	2.4	1.0
Bulk Ro Tail	84.8	1698.7	0.27	32.0	0.33	1	0.11	10.2	86.3	10.2	12.1	5.8
Feed	100.0	2003.7	2.24	31.4	2.74	7	1.62	100	100	100	100	100

KM4508-01 ED Composite Overall Metallurgical Balance

KM4508-01 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	Weight	Assay - percent or g/t				Distribution - percent					
Product	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	7.8	155.8	16.8	29.7	21.9	57	17.2	58.4	7.3	62.1	63.3	82.5
Product 1 to 2	12.5	250.1	14.3	28.8	17.9	45	11.9	80.1	11.4	81.3	80.8	91.4
Product 1 to 3	14.3	286.4	13.5	28.4	16.7	42	10.6	86.5	12.9	87.0	85.5	93.3
Product 1 to 4	15.2	305.0	13.2	28.2	16.2	40	10.0	89.8	13.7	89.8	87.9	94.2
Product 5	84.8	1698.7	0.27	32.0	0.33	1	0.11	10.2	86.3	10.2	12.1	5.8
Feed	100.0	2003.7	2.24	31.4	2.74	7	1.62	100	100	100	100	100

DATE:	May 1, 2015
PROJECT NO:	KM4508-02
PURPOSE:	To Repeat Test 01 at a Higher pH.
PROCEDURE:	Perform a one product rougher test.

FEED: 2 kg of ED Composite ore ground to a nominal $146 \mu m K_{80}$.

Stage	Reager	nts Added	g/tonne	Ti	ime (minute	es)	ъН	Redox	
Oldge	Lime	PAX	MIBC	Grind	Cond.	Float	pri	Redex	
Primary Grind	150			15			9.1	-16	
Bulk CIRCUIT:									
Rougher 1		5	8		1	2	8.9	28	
Rougher 2		5	-		1	2	8.9	20	
Rougher 3		5	8		1	2	8.8	75	
Rougher 4		5	-		1	2	8.6	70	

Flotation Data	Rougher		
Flotation Machine	D2A		
Cell Size in liters	4.4		
Aspiration	Air		
Water Type	Fresh		
Impeller Speed in rpm	1100		

Grinding Data	Primary Grind
Mill:	M4-Mild
Charge/Material:	20kg-Mild
Water:	1000 ml

Product	We	eight		Assay	- percer	nt or g/t		Distribution - percent				
	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Ro Con 1	5.5	110.4	24.1	29.8	27.7	60	13.3	61.8	5.1	56.4	51.0	49.9
Bulk Ro Con 2	2.9	58.4	9.20	29.7	16.9	47	14.7	12.5	2.7	18.2	21.1	29.2
Bulk Ro Con 3	2.2	44.1	5.09	26.4	7.05	30	4.14	5.2	1.8	5.7	10.2	6.2
Bulk Ro Con 4	1.2	24.4	5.00	28.0	6.02	22	2.46	2.8	1.0	2.7	4.1	2.0
Bulk Ro Tail	88.2	1770.2	0.43	32.9	0.52	1	0.21	17.7	89.4	17.0	13.6	12.6
Feed	100.0	2007.5	2.14	32.4	2.70	6	1.47	100	100	100	100	100

KM4508-02 ED Composite Overall Metallurgical Balance

KM4508-02 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	Weight	Assay - percent or g/t				Distribution - percent					
Product	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	5.5	110.4	24.1	29.8	27.7	60	13.3	61.8	5.1	56.4	51.0	49.9
Product 1 to 2	8.4	168.8	18.9	29.8	24.0	56	13.8	74.3	7.7	74.6	72.1	79.1
Product 1 to 3	10.6	212.9	16.1	29.1	20.5	50	11.8	79.5	9.5	80.3	82.3	85.3
Product 1 to 4	11.8	237.3	14.9	29.0	19.0	47	10.8	82.3	10.6	83.0	86.4	87.4
Product 5	88.2	1770.2	0.43	32.9	0.52	1	0.21	17.7	89.4	17.0	13.6	12.6
Feed	100.0	2007.5	2.14	32.4	2.70	6	1.47	100	100	100	100	100

DATE:	May 5, 2015
PROJECT NO:	KM4508-03
PURPOSE:	To Repeat Test 02 With More Collector.
PROCEDURE:	Perform a one product rougher test.

FEED: 2 kg of ED Composite ore ground to a nominal $146 \mu m K_{80}$.

Stage	Reage	nts Added	g/tonne	Ti	me (minute	es)	ъН	Redox
Oldge	Lime	PAX	MIBC	Grind	Cond.	Cond. Float		Redux
Primary Grind	150			15			9.0	-74
Bulk CIRCUIT:								
Rougher 1		10	15		1	2	9.0	-94
Rougher 2		10	8		1	2	8.9	-39
Rougher 3		10	15		1	3	8.9	-25
Rougher 4		10	15		1	3	8.8	-30

Flotation Data	Rougher			
Flotation Machine	D2E			
Cell Size in liters	4.4			
Aspiration	Air			
Water Type	Fresh			
Impeller Speed in rpm	1100			

Grinding Data	Primary Grind
Mill:	M4-Mild
Charge/Material:	20kg-Mild
Water:	1000 ml

Product	We	eight		Assay	- percer	nt or g/t		Distribution - percent				
FIOUUCI	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Ro Con 1	8.2	165.0	16.1	28.3	20.1	53	13.7	59.9	7.3	61.8	63.3	76.2
Bulk Ro Con 2	3.8	75.9	8.00	26.6	9.80	31	4.00	13.7	3.2	13.9	17.0	10.2
Bulk Ro Con 3	2.0	40.6	5.23	25.4	5.84	17	1.84	4.8	1.6	4.4	5.0	2.5
Bulk Ro Con 4	1.2	25.0	5.09	25.3	5.51	13	1.50	2.9	1.0	2.6	2.4	1.3
Bulk Ro Tail	84.7	1693.9	0.49	32.9	0.55	1	0.17	18.7	87.0	17.4	12.3	9.8
Feed	100.0	2000.4	2.22	32.0	2.68	7	1.49	100	100	100	100	100

KM4508-03 ED Composite Overall Metallurgical Balance

KM4508-03 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay - percent or g/t					Distribution - percent				
Product	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au	
Product 1	8.2	165.0	16.1	28.3	20.1	53	13.7	59.9	7.3	61.8	63.3	76.2	
Product 1 to 2	12.0	240.9	13.5	27.8	16.9	46	10.7	73.6	10.4	75.7	80.4	86.4	
Product 1 to 3	14.1	281.5	12.3	27.4	15.3	42	9.39	78.4	12.0	80.1	85.4	88.9	
Product 1 to 4	15.3	306.5	11.8	27.3	14.5	40	8.75	81.3	13.0	82.6	87.7	90.2	
Product 5	84.7	1693.9	0.49	32.9	0.55	1	0.17	18.7	87.0	17.4	12.3	9.8	
Feed	100.0	2000.4	2.22	32.0	2.68	7	1.49	100	100	100	100	100	

May 8, 2015
KM4508-04
To Repeat Test 3 With More Collector.
Perform a one product rougher test.

FEED: 2 kg of ED Composite ore ground to a nominal $146 \mu m K_{80}$.

Stage	Reager	nts Added	g/tonne	Ti	ime (minute	es)	ъН	Redox
Oldge	Lime	PAX	MIBC	Grind	Cond. Float		Neuux	
Primary Grind	150			15			9.1	137
Bulk CIRCUIT: Rougher 1 Rougher 2 Rougher 3		30 30 30	15 - 8		1 1 1	2 2 3	9.1 9.1 9.0	122 75 48
Rougher 4		30	8		1	3	8.9	23

Flotation Data	Rougher			
Flotation Machine	D2E			
Cell Size in liters	4.4			
Aspiration	Air			
Water Type	Fresh			
Impeller Speed in rpm	1100			

Grinding Data	Primary Grind
Mill:	M4-Mild
Charge/Material:	20kg-Mild
Water:	1000 ml

Product	We	eight		Assay	- percer	nt or g/t			Distrib	ution - p	ercent	
	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Ro Con 1	10.2	205.4	18.5	32.1	21.6	47	13.3	81.1	10.4	80.5	76.9	83.6
Bulk Ro Con 2	2.2	43.1	7.40	28.1	8.95	30	4.41	6.8	1.9	7.0	10.3	5.8
Bulk Ro Con 3	1.6	31.5	3.88	26.1	4.87	16	1.95	2.6	1.3	2.8	4.0	1.9
Bulk Ro Con 4	1.0	19.2	4.55	26.8	5.36	13	1.47	1.9	0.8	1.9	2.0	0.9
Bulk Ro Tail*	85.1	1705.4	0.21	31.8	0.25	1	0.15	7.6	85.6	7.8	6.8	7.8
Feed	100.0	2004.6	2.34	31.6	2.75	6	1.63	100	100	100	100	100

KM4508-04 ED Composite Overall Metallurgical Balance

*Since Ag value was <1, value was estimated.

KM4508-04 ED Composite

Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay	- percer	nt or g/t			Distribution - percent			
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	10.2	205.4	18.5	32.1	21.6	47	13.3	81.1	10.4	80.5	76.9	83.6
Product 1 to 2	12.4	248.5	16.6	31.4	19.4	44	11.8	87.9	12.3	87.5	87.2	89.4
Product 1 to 3	14.0	280.0	15.1	30.8	17.8	41	10.7	90.5	13.6	90.3	91.2	91.3
Product 1 to 4	14.9	299.2	14.5	30.6	17.0	39	10.1	92.4	14.4	92.2	93.2	92.2
Product 5	85.1	1705.4	0.21	31.8	0.25	1	0.15	7.6	85.6	7.8	6.8	7.8
Feed	100.0	2004.6	2.34	31.6	2.75	6	1.63	100	100	100	100	100

DATE:	May 12, 2015
PROJECT NO:	KM4508-05
PURPOSE:	To Determine the Amount of Magnetic Material in Sample.
PROCEDURE:	Perform a Standard Davis Tube Magnetic Separation Test.
FEED:	30g of ED Composite Pulverized Head Sample.

Conditions	Cycle I	
Mass (g)	30	
DCV	83	
DCA	1.3	
Gauss	4000	
Flow Rate (1 min)	0.4	
Agitation Speed (rpm)	82	
Time (min)	8 Minutes	
Comments:	Clear at 7 Minutes	

KM4508-05 ED Composite Overall Metallurgical Balance

Product	We	eight		Assay	- percer	nt or g/t		Distribution - percent				
TTOddet	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Magnetic Con	27.9	8.2	0.20	68.4	0.25	1	0.86	2.7	59.5	2.6	2.1	15.7
Magnetic Tail	72.1	21.2	2.76	18.0	3.65	9	1.78	97.3	40.5	97.4	97.9	84.3
Feed	100.0	29.4	2.05	32.1	2.70	7	1.52	100	100	100	100	100

KM4508-05 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	cum. Weight Assay - percent or g/t Distribution - percent										
Product	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	s	Ag	Au
Product 1	27.9	8.2	0.20	68.4	0.25	1	0.86	2.7	59.5	2.6	2.1	15.7
Product 2	72.1	21.2	2.76	18.0	3.65	9	1.78	97.3	40.5	97.4	97.9	84.3
Feed	100.0	29.4	2.05	32.1	2.70	7	1.52	100	100	100	100	100

DATE:	May 12, 2015
PROJECT NO:	KM4508-06
PURPOSE:	Investigate a Coarse Primary Grind.
PROCEDURE:	Perform a one product rougher test.

FEED: 2 kg of ED Composite ore ground to a nominal $189\mu m K_{80}$.

Stage	Reage	nts Added	g/tonne	Ti	me (minute	ъН	Redox		
Oldge	Lime	PAX	MIBC	Grind	Cond.	Float	pri	NCUUX	
Primary Grind	150			12			9.3	164	
Bulk CIRCUIT:									
Rougher 1		30	15		1	2	9.3	136	
Rougher 2		30	8		1	2	9.2	126	
Rougher 3		30	-		1	3	9.1	97	
Rougher 4		30	8		1	3	8.9	61	

Flotation Data	Rougher		
Flotation Machine	D2E		
Cell Size in liters	4.4		
Aspiration	A	ir	
Water Type	Fre	esh	
Impeller Speed in rpm	1100		

Grinding Data	Primary Grind				
Mill:	M4-Mild				
Charge/Material:	20kg-Mild				
Water:	1000 ml				

I												
Product	We	eight		Assay	- percer	nt or g/t			Distrib	ution - p	ercent	
Tioddol	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Ro Con 1	9.1	182.5	17.5	29.6	22.7	53	13.5	74.6	8.2	76.4	70.3	80.0
Bulk Ro Con 2	2.9	58.3	5.62	25.6	7.39	27	3.41	7.7	2.3	7.9	11.4	6.5
Bulk Ro Con 3	1.6	31.5	2.66	24.8	3.42	16	1.89	2.0	1.2	2.0	3.7	1.9
Bulk Ro Con 4	1.4	28.6	2.25	23.5	2.64	11	1.24	1.5	1.0	1.4	2.3	1.2
Bulk Ro Tail	85.0	1701.7	0.36	33.6	0.39	1	0.19	14.3	87.3	12.2	12.4	10.5
Feed	100.0	2002.6	2.14	32.7	2.71	7	1.54	100	100	100	100	100

KM4508-06 ED Composite Overall Metallurgical Balance

KM4508-06 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	Cum. Weight Assay - percent or g/t Distribution - pe				Assay - percent or g/t			ercent			
Product	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	9.1	182.5	17.5	29.6	22.7	53	13.5	74.6	8.2	76.4	70.3	80.0
Product 1 to 2	12.0	240.8	14.6	28.6	19.0	47	11.1	82.2	10.5	84.4	81.7	86.4
Product 1 to 3	13.6	272.3	13.2	28.2	17.2	43	10.0	84.2	11.7	86.4	85.4	88.4
Product 1 to 4	15.0	300.9	12.2	27.7	15.8	40	9.16	85.7	12.7	87.8	87.6	89.5
Product 5	85.0	1701.7	0.36	33.6	0.39	1	0.19	14.3	87.3	12.2	12.4	10.5
Feed	100.0	2002.6	2.14	32.7	2.71	7	1.54	100	100	100	100	100

DATE:	May 15, 2015
PROJECT NO:	KM4508-07
PURPOSE:	Preliminary Magnetic Separation Test.
PROCEDURE:	Perform a Standard Davis Tube Magnetic Separation Test.
FEED:	30g of Test 04 Bulk Rougher Tail.

Conditions	Cycle I												
Mass (g)	30												
DCV	81												
DCA	1.3												
Gauss	4000												
Flow Rate (1 min)	0.4												
Agitation Speed (rpm)	82												
Time (min)	5 Minutes												
Comments:	Clear at 4.5 Minutes												
Product	We	ight		Assay	- percer	nt or g/t		Distribution - percent					
---------------	-------	-------	------	-------	----------	-----------	------	------------------------	------	------	------	------	--
FIOUUCI	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au	
Magnetic Con	33.4	9.9	0.10	67.0	0.11	2	0.14	18.6	64.8	15.6	66.8	17.6	
Magnetic Tail	66.6	19.7	0.22	18.3	0.30	1	0.33	81.4	35.2	84.4	33.2	82.4	
Feed	100.0	29.6	0.18	34.6	0.24	1	0.27	100	100	100	100	100	

KM4508-07 Test 04 Bulk Rougher Tail Overall Metallurgical Balance

KM4508-07 Test 04 Bulk Rougher Tail Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay - percent or g/t Distribution -							ercent	
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	s	Ag	Au
Product 1	33.4	9.9	0.10	67.0	0.11	2	0.14	18.6	64.8	15.6	66.8	17.6
Product 2	66.6	19.7	0.22	18.3	0.30	1	0.33	81.4	35.2	84.4	33.2	82.4
Feed	100.0	29.6	0.18	34.6	0.24	1	0.27	100	100	100	100	100

DATE:	May 15, 2015
PROJECT NO:	KM4508-08
PURPOSE:	Preliminary Cleaner Test.
PROCEDURE:	Perform a standard one product cleaner test.
FEED:	2 kg of ED Composite ore ground to a nominal 146µm Bulk Regrind Discharge - 69µm K ₈₀ .

Stage	Reager	nts Added	g/tonne	Ti	ime (minute	s)	ъН	Redox
Slage	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Neuux
Primary Grind	150			15			9.1	190
Bulk CIRCUIT:								
Rougher 1	-	30	8		1	2	9.1	106
Rougher 2	-	30	-		1	2	9.0	82
Rougher 3	-	30	-		1	3	9.0	21
Rougher 4	-	30	-		1	3	9.0	19
Regrind	50			5			9.3	155
Cleaner 1	-	20	30		1	8	9.3	100
Cleaner 2	-	5	30		1	7	8.8	176
Cleaner 3	-	5	30		1	6	8.6	120

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Bulk Regrind
Flotation Machine	D2E	D1C	Mill:	M4-Mild	RM4-Mild
Cell Size in liters	4.4	2.2	Charge/Material:	20kg-Mild	6kg-Stainless Steel
Aspiration	А	lir	Water:	1000ml	estimated
Water Type	Fre	esh			
Impeller Speed in rpm	rpm 1100 1200				

K₈₀.

KM4508-08 ED Composite	
Overall Metallurgical Balance	

Product	We	eight		Assay	- percer	nt or g/t			Distrib	ution - p	ercent	
TTOQUEL	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Concentrate	9.2	184.2	22.5	30.7	27.1	59	14.0	92.1	8.7	91.7	78.3	87.9
Bulk 3rd Clnr Tail	0.4	8.6	3.04	26.6	4.03	27	4.00	0.6	0.4	0.6	1.7	1.2
Bulk 2nd Clnr Tail	1.3	25.9	1.90	24.2	2.54	18	1.91	1.1	1.0	1.2	3.4	1.7
Bulk 1st Clnr Tail	5.4	107.5	0.59	26.4	0.78	6	0.82	1.4	4.4	1.5	4.6	3.0
Bulk Rougher Tail	83.7	1672.0	0.13	33.2	0.16	1	0.11	4.8	85.6	4.9	12.0	6.3
Feed	100.0	1998.2	2.25	32.5	2.72	7	1.47	100	100	100	100	100

KM4508-08 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay - percent or g/t					Distribution - percent					
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au		
Product 1	9.2	184.2	22.5	30.7	27.1	59	14.0	92.1	8.7	91.7	78.3	87.9		
Product 1 to 2	9.6	192.8	21.6	30.5	26.1	58	13.6	92.7	9.1	92.3	80.0	89.0		
Product 1 to 3	10.9	218.7	19.3	29.8	23.3	53	12.2	93.8	10.0	93.5	83.3	90.7		
Product 1 to 4	16.3	326.2	13.1	28.7	15.9	37	8.43	95.2	14.4	95.1	88.0	93.7		
Product 5	83.7	1672.0	0.13	33.2	0.16	1	0.11	4.8	85.6	4.9	12.0	6.3		
Feed	100.0	1998.2	2.25	32.5	2.72	7	1.47	100	100	100	100	100		

DATE:	May 20, 2015
PROJECT NO:	KM4508-09
PURPOSE:	To Repeat Test 08 With a Fine Regrind.
PROCEDURE:	Perform a standard one product cleaner test.
FEED:	2 kg of ED Composite ore ground to a nominal 146 μ m K ₈₀ . Bulk Regrind Discharge - 48 μ m K ₈₀ .

Stage	Reager	nts Added	g/tonne	Ti	ime (minute	es)	ъН	Reday
Oldge	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Redux
Primary Grind	150			15			9.2	155
Bulk CIRCUIT:								
Rougher 1		30	30		1	2	9.2	105
Rougher 2		30	-		1	2	9.1	105
Rougher 3		30	8		1	3	9.1	86
Rougher 4		30	8		1	3	8.9	80
Regrind	50			12			9.1	127
Cleaner 1	-	10	75		1	8	9.1	111
Cleaner 2	-	2	75		1	7	8.7	169
Cleaner 3	-	1	90		1	6	8.5	170

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Bulk Regrind
Flotation Machine	D2C	D1C	Mill:	M4-Mild	RM4-Mild
Cell Size in liters	4.4	2.2	Charge/Material:	20kg-Mild	6kg-Stainless Steel
Aspiration	А	lir	Water:	1000ml	estimated
Water Type	Fre	esh			
Impeller Speed in rpm	1100	1200			

KM4508-09 ED Composite Overall Metallurgical Balance

Product	We	ight		Assay	- percer	nt or g/t			Distrib	ercent		
Tioduct	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Concentrate	9.0	180.5	23.4	31.3	27.6	59	14.7	93.9	8.7	93.5	76.7	84.7
Bulk 3rd Clnr Tail	0.9	18.8	2.64	24.2	3.69	24	3.86	1.1	0.7	1.3	3.3	2.3
Bulk 2nd Clnr Tail	1.9	37.3	1.40	26.0	1.84	13	1.88	1.2	1.5	1.3	3.5	2.2
Bulk 1st Clnr Tail	5.3	105.8	0.52	27.5	0.74	6	1.47	1.2	4.5	1.5	4.6	5.0
Bulk Rougher Tail	82.9	1659.2	0.07	33.1	0.08	1	0.11	2.6	84.6	2.5	12.0	5.8
Feed	100.0	2001.6	2.25	32.4	2.66	7	1.57	100	100	100	100	100

KM4508-09 ED Composite Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay	- percer	nt or g/t		Distribution - percent				
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	9.0	180.5	23.4	31.3	27.6	59	14.7	93.9	8.7	93.5	76.7	84.7
Product 1 to 2	10.0	199.3	21.4	30.6	25.3	56	13.7	95.0	9.4	94.8	80.0	87.0
Product 1 to 3	11.8	236.6	18.3	29.9	21.6	49	11.8	96.2	10.9	96.0	83.5	89.2
Product 1 to 4	17.1	342.4	12.8	29.2	15.2	36	8.62	97.4	15.4	97.5	88.0	94.2
Product 5	82.9	1659.2	0.07	33.1	0.08	1	0.11	2.6	84.6	2.5	12.0	5.8
Feed	100.0	2001.6	2.25	32.4	2.66	7	1.57	100	100	100	100	100

DATE:	May 20, 2015
PROJECT NO:	KM4508-10
PURPOSE:	To Repeat Test 09 at a Fine Regrind.
PROCEDURE:	Perform a standard one product cleaner test.

FEED:	2 kg of ED Composite ore ground to a nominal 146 μm K_{80}
	Bulk Regrind Discharge - 36µm K ₈₀ .

Stago	R	eagents A	dded g/toni	ne	Ti	me (minute	s)	ъЦ	Podox
Slage	Lime	PAX	W34	MIBC	Grind	Cond.	Float	pri	Neuox
Primary Grind	150				15			9.2	163
Bulk CIRCUIT:									
Rougher 1		30		30		1	2	9.2	120
Rougher 2		30		-		1	2	9.2	75
Rougher 3		30		8		1	3	9.1	66
Rougher 4		30		8		1	3	9.0	56
Regrind	50				20			9.1	125
Cleaner 1		10	56	30		1	8	9.1	116
Cleaner 2		2	112	30		1	7	8.7	67
Cleaner 3		1	112	30		1	6	8.5	158

Flotation Data	Rougher	Cleaner			
Flotation Machine	D2C	D1C			
Cell Size in liters	4.4	2.2			
Aspiration	Air				
Water Type	Fresh				
Impeller Speed in rpm	1100	1200			

Grinding Data	Primary Grind	Bulk Regrind
Mill:	M4-Mild	RM4-Mild
Charge/Material:	20kg-Mild	6kg-Stainless Steel
Water:	1000ml	estimated

KM4508-10 ED Composite Overall Metallurgical Balance

Product	Weight			Assay	- percei	nt or g/t		Distribution - percent				
rioduci	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Concentrate	8.2	165.2	25.9	31.7	30.6	67	13.8	93.6	8.1	92.5	75.6	75.7
Bulk 3rd Clnr Tail	0.6	12.7	2.72	24.9	4.06	26	4.44	0.8	0.5	0.9	2.3	1.9
Bulk 2nd Clnr Tail	1.9	38.8	1.71	25.5	2.54	19	2.62	1.5	1.5	1.8	5.0	3.4
Bulk 1st Clnr Tail	6.0	120.5	0.61	27.0	0.93	7	2.56	1.6	5.0	2.0	5.8	10.2
Bulk Rougher Tail	83.2	1665.5	0.07	33.1	0.09	1	0.16	2.6	84.9	2.7	11.4	8.8
Feed	100.0	2002.7	2.28	32.4	2.73	7	1.50	100	100	100	100	100

KM4508-10 ED Composite

Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay	- perce	nt or g/t		Distribution - percent				
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	8.2	165.2	25.9	31.7	30.6	67	13.8	93.6	8.1	92.5	75.6	75.7
Product 1 to 2	8.9	177.9	24.2	31.2	28.7	64	13.1	94.3	8.6	93.4	77.8	77.5
Product 1 to 3	10.8	216.7	20.2	30.2	24.0	56	11.2	95.8	10.1	95.2	82.9	80.9
Product 1 to 4	16.8	337.2	13.2	29.1	15.8	38	8.14	97.4	15.1	97.3	88.6	91.2
Product 5	83.2	1665.5	0.07	33.1	0.09	1	0.16	2.6	84.9	2.7	11.4	8.8
Feed	100.0	2002.7	2.28	32.4	2.73	7	1.50	100	100	100	100	100

DATE:	May 27, 2015
PROJECT NO:	KM4508-11
PURPOSE:	Preliminary Magnetic Separation Test.
PROCEDURE:	Perform a Standard Davis Tube Magnetic Separation Test.
FEED:	KM4508 Test 09 Bulk Concentrate.

Conditions	Cycle I	
Mass (g)	30	
DCV	18	
DCA	0.3	
Gauss	1000	
Flow Rate (1 min)	0.4	
Agitation Speed (rpm)	82	
Time (min)	5 Minutes	
Comments:		

KM4508-11 Test 09 Bulk Concentrate Overall Metallurgical Balance

Product	Weight			Assay	- perce	nt or g/t		Distribution - percent				
	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Magnetic Con	8.8	2.6	7.00	53.3	8.55	50	nes	2.7	14.6	2.7	7.5	-
Magnetic Tail	91.2	27.1	23.8	29.8	29.5	59	15.9	97.3	85.4	97.3	92.5	-
Feed	100.0	29.7	22.3	31.9	27.7	58	-	100	100	100	100	0

KM4508-11 Test 09 Bulk Concentrate Cumulative Metallurgical Balance

Cumulative	Cum.	Weight	Assay - percent or g/t				Distribution - percent					
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	8.8	2.6	7.00	53.3	8.55	50	-	2.7	14.6	2.7	7.5	-
Product 2	91.2	27.1	23.8	29.8	29.5	59	-	97.3	85.4	97.3	92.5	-
Feed	100.0	29.7	22.3	31.9	27.7	58	-	100	100	100	100	0

DATE:	May 27, 2015
PROJECT NO:	KM4508-12
PURPOSE:	Preliminary Magnetic Separation Test.
PROCEDURE:	Perform a Standard Davis Tube Magnetic Separation Test.
FEED:	KM4508 Test 10 Bulk Concentrate.

Conditions	Cycle I	
Mass (g)	30	
DCV	18	
DCA	0.3	
Gauss	1000	
Flow Rate (1 min)	0.4	
Agitation Speed (rpm)	82	
Time (min)	5 Minutes	
Comments:		

KM4508-12 Test 10 Bulk Concentrate Overall Metallurgical Balance

Product	We	ight	Assay - percent or g/t						Distribution - percent				
FIODUCE	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au	
Magnetic Con	6.1	1.8	8.30	53.9	9.98	57	nes	2.2	10.2	2.0	5.5	-	
Magnetic Tail	93.9	27.8	23.8	30.6	31.3	63	12.4	97.8	89.8	98.0	94.5	-	
Feed	100.0	29.6	22.9	32.0	30.0	63	-	100	100	100	100	0	

KM4508-12 Test 10 Bulk Concentrate Cumulative Metallurgical Balance

Cumulative	Cum.	Weight	Assay - percent or g/t					Distribution - percent				
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	6.1	1.8	8.30	53.9	9.98	57	-	2.2	10.2	2.0	5.5	0.0
Product 2	93.9	27.8	23.8	30.6	31.3	63	-	97.8	89.8	98.0	94.5	-
Feed	100.0	29.6	22.9	32.0	30.0	63	-	100	100	100	100	0

DATE:	June 1, 2015
PROJECT NO:	KM4508-13
PURPOSE:	To Repeat Test 10 at a Fine Regrind.
PROCEDURE:	Perform a standard one product cleaner test.

FEED:	2 kg of ED Composite ore ground to a nominal 146 μ m K ₈₀ .
	Bulk Regrind Discharge - 9µm K ₈₀ .

Stago	R	eagents Ad	dded g/toni	ne	Ti	me (minute	s)	ъЦ	Redox	
Slage	Lime	PAX	W34	MIBC	Grind	Cond.	Float	pri	Neuox	
Primary Grind	150				15			9.0	-42	
Bulk CIRCUIT:										
Rougher 1	-	30		30		1	2	9.0	-62	
Rougher 2	-	30		-		1	2	8.8	-34	
Rougher 3	-	30		-		1	3	8.8	-2	
Rougher 4	-	30		-		1	3	8.7	-16	
Regrind	50				15			9.0	-52	
Cleaner 1	-	10	14			1	8	9.0	-64	
Cleaner 2	-	2	-			1	7	8.4	-66	
Cleaner 3	-	1	-			1	6	8.3	-14	

Flotation Data	Rougher	Cleaner		
Flotation Machine	D2A	D1B		
Cell Size in liters	4.4	2.2		
Aspiration	Air			
Water Type	Fresh			
Impeller Speed in rpm	1100	1200		

Grinding Data	Primary Grind	Bulk Regrind
Mill:	M4-Mild	Stirred Mill
Charge/Material:	20kg-Mild	1.2kg-Beads
Water:	1000ml	estimated

KM4508-13 ED Composite Overall Metallurgical Balance

Product	Weight			Assay	- perce	nt or g/t		Distribution - percent				
Fioduct	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Concentrate	6.3	125.1	31.8	27.8	34.0	79	17.0	90.0	5.6	80.2	71.3	74.8
Bulk 3rd Clnr Tail	0.6	12.6	5.86	26.7	15.90	48	8.39	1.7	0.5	3.8	4.4	3.7
Bulk 2nd Clnr Tail	1.8	36.3	2.36	24.5	8.16	21	6.21	1.9	1.4	5.6	5.5	7.9
Bulk 1st Clnr Tail	5.7	113.1	0.68	26.0	2.81	8	1.14	1.7	4.7	6.0	6.5	4.5
Bulk Rougher Tail	85.6	1703.5	0.12	32.0	0.14	1	0.15	4.6	87.7	4.5	12.3	9.0
Feed	100.0	1990.6	2.22	31.2	2.67	7	1.43	100	100	100	100	100

KM4508-13 ED Composite

Cumulative Metallurgical Balance

Cumulative	Cum.	Weight	Assay - percent or g/t					Distribution - percent				
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	s	Ag	Au
Product 1	6.3	125.1	31.8	27.8	34.0	79	17.0	90.0	5.6	80.2	71.3	74.8
Product 1 to 2	6.9	137.7	29.4	27.7	32.3	76	16.2	91.7	6.1	83.9	75.7	78.5
Product 1 to 3	8.7	174.0	23.8	27.0	27.3	65	14.1	93.6	7.6	89.5	81.2	86.5
Product 1 to 4	14.4	287.1	14.7	26.6	17.7	42	9.01	95.4	12.3	95.5	87.7	91.0
Product 5	85.6	1703.5	0.12	32.0	0.14	1	0.15	4.6	87.7	4.5	12.3	9.0
Feed	100.0	1990.6	2.22	31.2	2.67	7	1.43	100	100	100	100	100

DATE:	June 4, 2015
PROJECT NO:	KM4508-14
PURPOSE:	To Repeat Test 13 at a Coarser Regrind.
PROCEDURE:	Perform a standard one product cleaner test.
FEED:	2 kg of ED Composite ore ground to a nominal 146 μ m K $_{80}$.

Bulk Regrind Discharge - 12µm K₈₀.

Charge	Reage	nts Added	g/tonne	Ti	me (minute	s)		Deday
Stage	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Redox
Primary Grind	150			15			9.1	63
Bulk CIRCUIT:								
Rougher 1	-	30	15		1	2	9.0	-12
Rougher 2	-	30	15		1	2	9.0	-29
Rougher 3	-	30	15		1	3	8.9	-41
Rougher 4	-	30	-		1	3	8.8	-43
Regrind	50			8			8.6	-18
Cleaner 1	-	10	45		1	8	8.4	-3
Cleaner 2	-	2	15		1	7	8.4	-4
Cleaner 3	-	1	15		1	6	8.4	-23

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Bulk Regrind
Flotation Machine	D2A	D1B	Mill:	M4-Mild	Stirred Mill
Cell Size in liters	4.4	2.2	Charge/Material:	20kg-Mild	1.2kg-Beads
Aspiration	A	vir	Water:	1000ml	estimated
Water Type	Fre	esh			
Impeller Speed in rpm	1100	1200			

KM4508-14 ED Composite Overall Metallurgical Balance

Product	We	eight		Assay	- percei	nt or g/t		Distribution - percent				
Fioduci	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Concentrate	7.0	139.2	29.8	29.3	34.7	79	17.6	92.5	6.8	89.3	82.8	81.1
Bulk 3rd Clnr Tail	0.4	7.7	4.51	24.0	9.71	37	6.58	0.8	0.3	1.4	2.1	1.7
Bulk 2nd Clnr Tail	1.1	22.1	1.82	22.9	4.33	19	2.94	0.9	0.8	1.8	3.2	2.1
Bulk 1st Clnr Tail	6.1	121.7	0.47	26.1	1.09	6	1.65	1.3	5.3	2.5	5.5	6.6
Bulk Rougher Tail	85.4	1706.8	0.12	30.6	0.16	1	0.15	4.6	86.8	5.1	6.4	8.5
Feed	100.0	1997.5	2.25	30.1	2.71	7	1.51	100	100	100	100	100

KM4508-14 ED Composite

Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay	- percer	nt or g/t			Distrib	ution - p	ercent	
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	7.0	139.2	29.8	29.3	34.7	79	17.6	92.5	6.8	89.3	82.8	81.1
Product 1 to 2	7.4	146.9	28.5	29.0	33.4	77	17.0	93.3	7.1	90.7	84.9	82.7
Product 1 to 3	8.5	169.0	25.0	28.2	29.6	69	15.2	94.2	7.9	92.5	88.1	84.9
Product 1 to 4	14.6	290.7	14.7	27.3	17.7	43	9.52	95.4	13.2	94.9	93.6	91.5
Product 5	85.4	1706.8	0.12	30.6	0.16	1	0.15	4.6	86.8	5.1	6.4	8.5
Feed	100.0	1997.5	2.25	30.1	2.71	7	1.51	100	100	100	100	100

DATE:	June 8, 2015
PROJECT NO:	KM4508-15
PURPOSE:	To Repeat Test 04 With Less Collector.
PROCEDURE:	Perform a one product rougher test.

FEED: 2 kg of ED Composite ore ground to a nominal $146 \mu m K_{80}$.

Reager	nts Added	g/tonne	Ti	me (minute	s)	ъН	Redox
Lime	PAX	MIBC	Grind	Cond.	Float	pri	Redux
150			15			9.1	30
J							
-	20	15		1	2	9.0	15
-	20	8		1	2	9.0	-32
- 1	20	8		1	3	9.0	-5
-	20	8		1	3	8.9	-21
	Reager Lime 150 - - - -	Reagents Added Lime PAX 150 - - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	Reagents Added g/tonneLimePAXMIBC150-2015-208208208208-	Reagents Added g/tonne Ti Lime PAX MIBC Grind 150 15 15 - 20 15 - 20 8 - 20 8 - 20 8 - 20 8 - 20 8	Reagents Added g/tonne Time (minute Lime PAX MIBC Grind Cond. 150 15 15 15 16 17 16<	Reagents Added g/tonne Time (minutes) Lime PAX MIBC Grind Cond. Float 150 - 20 15 15 - - 20 - 20 - 20 - 20 - 1 2 - - 20 - - 20 - 3 - 20 - 3 - 3 - 3 -	Reagents Added g/tonne Time (minutes) pH Lime PAX MIBC Grind Cond. Float 150 Image: Condition of the second

Flotation Data	Rougher		
Flotation Machine	D2A		
Cell Size in liters	4.4		
Aspiration	A	ir	
Water Type	Fre	esh	
Impeller Speed in rpm	1100		

Grinding Data	Primary Grind
Mill:	M4-Mild
Charge/Material:	20kg-Mild
Water:	1000 ml

KM4508-15 ED Composite Overall Metallurgical Balance

Product	Product Weight			Assay	- perce	nt or g/t		Distribution - percent				
rioduct	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Ro Con 1	9.5	190.7	19.6	29.8	25.8	58	15.2	78.8	9.1	81.0	70.1	84.1
Bulk Ro Con 2	2.7	53.5	9.10	27.4	10.2	31	3.42	10.3	2.3	9.0	10.5	5.3
Bulk Ro Con 3	1.7	34.2	8.00	27.0	8.43	22	1.99	5.8	1.5	4.7	4.8	2.0
Bulk Ro Con 4	1.4	28.7	3.73	26.2	4.02	21	1.55	2.3	1.2	1.9	3.8	1.3
Bulk Ro Tail*	84.7	1694.2	0.08	31.7	0.12	1	0.15	2.9	85.9	3.3	10.7	7.4
Feed	100.0	2001.3	2.37	31.2	3.03	8	1.72	100	100	100	100	100

*Since Ag value was <1, value was estimated.

Cumulative	Cum.	Weight	Assay - percent or g/t Distribution - perce					ercent				
Product	%	grams	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
Product 1	9.5	190.7	19.6	29.8	25.8	58	15.2	78.8	9.1	81.0	70.1	84.1
Product 1 to 2	12.2	244.2	17.3	29.3	22.4	52	12.6	89.0	11.4	90.0	80.7	89.4
Product 1 to 3	13.9	278.4	16.2	29.0	20.7	48	11.3	94.8	12.9	94.8	85.4	91.3
Product 1 to 4	15.3	307.1	15.0	28.7	19.1	46	10.4	97.1	14.1	96.7	89.3	92.6
Product 5	84.7	1694.2	0.08	31.7	0.12	1	0.15	2.9	85.9	3.3	10.7	7.4
Feed	100.0	2001.3	2.37	31.2	3.03	8	1.72	100	100	100	100	100

KM4508-15 ED Composite Cumulative Metallurgical Balance

DATE:	June 10, 2015
PROJECT NO:	KM4508-16
PURPOSE:	Batch Cleaner Test With Test 15 Rougher Conditions.
PROCEDURE:	Perform a standard one product cleaner test.
FEED:	2 kg of ED Composite ore ground to a nominal 146 μ m K ₈₀ .

Bulk Regrind Discharge - 70µm K₈₀.

Store	Reage	nts Added	g/tonne	Ti	me (minute	s)	ъЦ	Dedex
Slage	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Redux
Primary Grind	150			15			9.0	-68
Bulk CIRCUIT:								
Rougher 1	-	20	8		1	2	9.0	-104
Rougher 2	\checkmark	20	-		1	2	9.0	82
Rougher 3	\checkmark	20	-		1	3	9.0	84
Rougher 4	\checkmark	20	8		1	3	9.0	101
Regrind	50			5			9.2	105
Cleaner 1		15	15		1	7	9.2	100
Cleaner 2		5	23		1	6	8.7	146
Cleaner 3		5	23		1	5	8.7	151

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Bulk Regrind
Flotation Machine	D2A	D1B	Mill:	M4-Mild	RM4-Mild
Cell Size in liters	4.4	2.2	Charge/Material:	20kg-Mild	6kg-Stainless Steel
Aspiration	A	ir	Water:	1000ml	estimated
Water Type	Fre	esh			
Impeller Speed in rpm	1100	1200			

KM4508-16 ED Composite Overall Metallurgical Balance

Product	Weight		Assay - percent or g/t					Distribution - percent				
Floduct	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Concentrate	9.6	191.2	22.6	31.6	29.1	58	13.1	93.5	9.6	92.7	78.2	83.8
Bulk 3rd Clnr Tail	0.5	9.0	3.11	26.7	4.53	28	6.06	0.6	0.4	0.7	1.8	1.8
Bulk 2nd Clnr Tail	1.3	25.3	2.09	25.9	3.12	19	2.70	1.1	1.0	1.3	3.4	2.3
Bulk 1st Clnr Tail	5.0	99.1	0.57	27.0	0.85	7	1.14	1.2	4.2	1.4	4.9	3.8
Bulk Rougher Tail	83.7	1672.6	0.10	32.0	0.14	1	0.15	3.5	84.8	3.9	11.8	8.4
Feed	100.0	1997.2	2.31	31.6	3.01	7	1.50	100	100	100	100	100

KM4508-16 ED Composite

Cumulative Metallurgical Balance

Cumulative	Cum.	Weight		Assay	- percer	nt or g/t			Distribution - percent			
Product	%	grams	Cu	Fe	S	Ag	Au	Cu	Fe	s	Ag	Au
Product 1	9.6	191.2	22.6	31.6	29.1	58	13.1	93.5	9.6	92.7	78.2	83.8
Product 1 to 2	10.0	200.2	21.7	31.4	28.0	57	12.8	94.1	10.0	93.4	79.9	85.6
Product 1 to 3	11.3	225.5	19.5	30.8	25.2	52	11.7	95.2	11.0	94.7	83.3	87.9
Product 1 to 4	16.3	324.6	13.7	29.6	17.8	39	8.47	96.5	15.2	96.1	88.2	91.6
Product 5	83.7	1672.6	0.10	32.0	0.14	1	0.15	3.5	84.8	3.9	11.8	8.4
Feed	100.0	1997.2	2.31	31.6	3.01	7	1.50	100	100	100	100	100

DATE:	June 16, 2015
PROJECT NO:	KM4508-17
PURPOSE:	Preliminary Locked Cycle Test.
PROCEDURE:	Perform a standard one product locked cycle test.
FEED:	5 x 2 kg of ED Composite ore ground to a nominal 146 μm $K_{80}.$

Bulk Regrind Discharge - $60\mu m K_{80}$.

Stago	Reage	nts Added g	g/tonne	Ti	ime (minute	s)	2	Podov
Slage	Lime	PAX	MIBC	Grind	Cond.	Float	рп	Neuox
Primary Grind	150			15			9.1	107
Bulk CIRCUIT:								
Rougher 1	-	20	15		1	2	9.1	38
Rougher 2	-	20	-		1	2	8.9	36
Rougher 3	-	20	8		1	3	8.8	55
Rougher 4	-	20	4		1	3	8.7	101
Regrind	50		W34	5			9.1	125
Cleaner 1	-	8	84		1	8	9.1	96
Cleaner 2	-	3	84		1	7	8.8	125
Cleaner 3	-	3	84		1	6	8.6	126

Flotation Data	Rougher	Cleaner	Grinding Data	Primary Grind	Bulk Regrind
Flotation Machine:	D2A	D1B	Mill:	M4-Mild	RM4-Mild
Cell Size in liters:	4.4	2.2	Charge/Material:	20kg-Mild	6kg-Stainless Steel
Aspiration:	A	\ir	Water:	1000ml	estimated
Water Type:	Fre	esh			
Impeller Speed in rpm:	1100	1200			

Product		Cycle	s - Weight	(gms)	
FIOUUCI	I	II		IV	V
Bulk CIRCUIT:					
Rougher Concentrate	325	325	325	320	325
Cleaner Tail 1	100	140	130	125	140
Cleaner Tail 2	31	39	46	46	53
Cleaner Tail 3	15	15	17	17	17
Bulk Concentrate	175	180	180	185	190
Primary Discharge pH	9.2	9.1	9.1	9.1	9.1
Primary Discharge Redox	115	102	122	112	107

KM4508-17 Estimated Dry Weight Table

Product	Weight	Weight		Assay	- percer	nt or g/t			Distribution - percent			
FIOUUCI	%	g	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
Bulk Con I	2.0	196.3	21.8	30.7	28.4	57	12.9	17.8	1.9	18.0	15.6	16.3
Bulk Con II	2.0	202.3	22.3	30.3	28.7	56	12.8	18.9	1.9	18.7	15.8	16.7
Bulk Con III	2.1	206.7	22.0	31.7	27.9	58	13.4	19.0	2.1	18.6	16.7	17.9
Bulk Con IV	2.1	207.8	22.4	30.5	29.0	57	12.4	19.4	2.0	19.4	16.5	16.6
Bulk Con V	2.1	210.1	22.1	30.3	28.5	57	14.4	19.4	2.0	19.3	16.7	19.5
Bulk 3rd Clnr Tail	0.1	14.7	3.26	24.4	4.73	31	3.66	0.2	0.1	0.2	0.6	0.3
Bulk 2nd Clnr Tail	0.5	45.5	2.01	23.9	2.94	21	1.98	0.4	0.3	0.4	1.3	0.6
Bulk 1st Clnr Tail I	1.1	106.4	0.54	25.6	0.81	7	1.27	0.2	0.9	0.3	1.0	0.9
Bulk 1st Clnr Tail II	1.4	144.6	0.92	25.6	1.35	10	0.98	0.6	1.2	0.6	2.0	0.9
Bulk 1st Clnr Tail III	1.3	131.5	0.77	25.9	1.12	9	0.94	0.4	1.1	0.5	1.7	0.8
Bulk 1st Clnr Tail IV	1.3	125.6	0.89	25.4	1.27	11	1.02	0.5	1.0	0.5	1.9	0.8
Bulk 1st Clnr Tail V	1.4	142.0	0.84	25.4	1.20	10	0.90	0.5	1.1	0.5	2.0	0.8
Bulk Ro Tail I	16.5	1650.8	0.09	31.8	0.12	1	0.14	0.6	16.7	0.6	2.3	1.5
Bulk Ro Tail II	16.4	1644.4	0.10	32.1	0.13	1	0.15	0.7	16.8	0.7	2.3	1.6
Bulk Ro Tail III*	16.6	1660.1	0.08	32.1	0.11	1	0.17	0.5	16.9	0.6	1.2	1.8
Bulk Ro Tail IV*	16.7	1669.5	0.06	32.1	0.09	1	0.14	0.4	17.0	0.5	1.2	1.5
Bulk Ro Tail V*	16.5	1653.3	0.07	32.3	0.10	1	0.13	0.5	17.0	0.5	1.2	1.4
FEED	100	10012	2.39	31.5	3.10	7	1.55	100.0	100.0	100.0	100.0	100.0

KM4508-17 ED Composite OVERALL CYCLE TEST MASS AND METALLURGICAL BALANCE

*Ag value lower than 1, values are estimated.

			r					Ir				
Product	Weight	Weight		Assay	- percer	nt or g/t			Distrib	ution - p	ercent	-
Tioddot	%	g	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
CYCLE IV												
Flotation Feed	100.0	2003	2.43	31.5	3.16	7	1.47	100.0	100.0	100.0	100.0	100.0
Bulk Con	10.4	207.8	22.4	30.5	29.0	57	12.4	95.6	10.0	95.1	84.2	87.7
Bulk 1st Clnr Tail	6.3	125.6	0.89	25.4	1.27	11	1.02	2.3	5.1	2.5	9.8	4.4
Bulk Ro Tail	83.4	1669.5	0.06	32.1	0.09	1	0.14	2.1	84.9	2.4	5.9	8.0
CYCLE V												
Flotation Feed	100.0	2005	2.43	31.6	3.15	7	1.68	100.0	100.0	100.0	100.0	100.0
Bulk Con	10.5	210.1	22.1	30.3	28.5	57	14.4	95.3	10.0	94.7	84.2	89.8
Bulk 1st Clnr Tail	7.1	142.0	0.84	25.4	1.20	10	0.90	2.4	5.7	2.7	10.0	3.8
Bulk Ro Tail	82.4	1653.3	0.07	32.3	0.10	1	0.13	2.3	84.3	2.6	5.8	6.4
CYCLES IV and V												
Flotation Feed	100.0	4008	2.43	31.6	3.16	7	1.57	100.0	100.0	100.0	100.0	100.0
Bulk Con	10.4	417.9	22.3	30.4	28.7	57	13.4	95.4	10.0	94.9	84.2	88.8
Bulk 1st Clnr Tail	6.7	267.6	0.86	25.4	1.23	10	0.96	2.4	5.4	2.6	9.9	4.1
Bulk Ro Tail	82.9	3322.8	0.06	32.2	0.09	1	0.14	2.2	84.6	2.5	5.9	7.1

KM4508-17 ED Composite METALLURGICAL BALANCES BY TEST CYCLES

Cycle Test Stability Data												
Cycles	Mass		Calculated Head					Metal Unit Variances (%)				
Cycles	%Var.	g/cycle	Cu	Fe	S	Ag	Au	Cu	Fe	S	Ag	Au
I	-2.4	1953.5	2.29	31.4	3.00	7	1.48	-7	-3	-6	-5	-7
Ш	-0.6	1991.3	2.42	31.4	3.12	7	1.50	1	-1	0	1	-4
III	-0.2	1998.3	2.39	31.7	3.05	7	1.59	0	0	-2	-2	2
IV	0.0	2002.9	2.43	31.5	3.16	7	1.47	2	0	2	-2	-5
V	0.2	2005.4	2.43	31.6	3.15	7	1.68	2	1	2	-1	9
Total	-	2002.3	2.39	31.5	3.10	7	1.55	-	-	-	-	-

	Flotation Stream	Weight		Assay	(percent	t or g/t)			Distrib	ution (pe	ercent)	
No.	Product	%	Cu	Fe	s	Ag	Au	Cu	Fe	S	Ag	Au
1	Bulk Ro Feed	100.0	2.43	31.6	3.16	7	1.57	100.0	100.0	100.0	100.0	100.0
2	Bulk Ro Tail	82.9	0.06	32.2	0.09	1	0.14	2.2	84.6	2.5	5.9	7.1
3	Bulk Ro Con	17.1	13.9	28.4	18.0	39	8.55	97.8	15.4	97.5	94.1	92.9
4	Bulk 1st Clnr Feed	20.1	12.2	27.8	15.8	37	7.63	100.7	17.7	100.7	104.1	97.4
5	Bulk 1st Clnr Tail	6.7	0.86	25.4	1.23	10	0.96	2.4	5.4	2.6	9.9	4.1
6	Bulk 1st Clnr Con	13.4	17.8	29.0	23.1	49	10.9	98.3	12.3	98.1	94.2	93.4
7	Bulk 2nd Clnr Tail	2.3	2.01	23.9	2.94	21	1.98	1.9	1.7	2.1	6.8	2.9
8	Bulk 2nd Clnr Con	11.2	21.0	30.0	27.2	55	12.8	96.4	10.6	96.0	87.4	90.5
9	Bulk 3rd Clnr Tail	0.7	3.26	24.4	4.73	31	3.66	1.0	0.6	1.1	3.2	1.7
10	Bulk 3rd Clnr Con	10.4	22.3	30.4	28.7	57	13.4	95.4	10.0	94.9	84.2	88.8
11	Final Tail	89.6	0.12	31.7	0.18	1	0.20	4.6	90.0	5.1	15.8	11.2

KM4508-17 ED Composite CYCLES (IV+V) MASS BALANCE FLOWSHEET AND METALLURGICAL BALANCE DATA

<u>APPENDIX III – KM4508</u>

PARTICLE SIZING DATA

INDEX

	<u>µm K₈₀</u>	<u>PAGE</u>
ALIBRATIONS		
KM4508 ED Composite – 10 Minute Grind		1
KM4508 ED Composite – 12 Minute Grind		2
KM4508 ED Composite – 15 Minute Grind		3
IZINGS		
KM4508-08 Copper Regrind Discharge		4
KM4508-09 Copper Regrind Discharge		5
KM4508-10 Copper Regrind Discharge		6
KM4508-13 Copper Regrind Discharge	9	7
KM4508-14 Copper Regrind Discharge		8
KM4508-16 Copper Regrind Discharge		9
KM4508-17 Copper Regrind Discharge V		10
	ALIBRATIONS KM4508 ED Composite – 10 Minute Grind KM4508 ED Composite – 12 Minute Grind KM4508 ED Composite – 15 Minute Grind ZINGS KM4508-08 Copper Regrind Discharge KM4508-09 Copper Regrind Discharge KM4508-10 Copper Regrind Discharge KM4508-13 Copper Regrind Discharge KM4508-14 Copper Regrind Discharge KM4508-16 Copper Regrind Discharge	Im K_80ALIBRATIONSKM4508 ED Composite – 10 Minute Grind

Product	Particle Size	Weight	Cumulative			
	µm	% Retained	% Passing			
35 Mesh	425	0.00	100.0			
48 Mesh	300	8.80	91.2			
65 Mesh	212	19.70	71.5			
100 Mesh	150	17.70	53.8			
150 Mesh	106	13.00	40.8			
200 Mesh	75	10.00	30.8			
270 Mesh	53	7.90	22.9			
400 Mesh	38	5.00	17.9			
TOTAL		100.00	**			

TABLE III-1 SCREEN ANALYSIS KM4508 ED Composite - 10 Minute Grind Calibration

K80= 249µm

Note: 10 min. grind calibration using 2 kg. Ore, 1000 ml water and 20 kg. of Mild Steel rods in Mill: M5

Product	Particle Size	Weight	Cumulative			
	µm	% Retained	% Passing			
35 Mesh	425	0.00	100.0			
48 Mesh	300	0.50	99.5			
65 Mesh	212	12.50	87.0			
100 Mesh	150	19.50	67.5			
150 Mesh	106	17.20	50.3			
200 Mesh	75	12.30	38.0			
270 Mesh	53	8.50	29.5			
400 Mesh	38	7.20	22.3			
TOTAL		100.00	**			

TABLE III-2 SCREEN ANALYSIS KM4508 ED Composite - 12 Minute Grind Calibration

K80= 189µm

Note: 12 min. grind calibration using 2 kg. Ore, 1000 ml water and 20 kg. of Mild Steel rods in Mill: M5

Product	Particle Size	Weight	Cumulative			
	µm	% Retained	% Passing			
35 Mesh	425	0.00	100.0			
48 Mesh	300	0.10	99.9			
65 Mesh	212	1.30	98.6			
100 Mesh	150	16.90	81.7			
150 Mesh	106	19.70	62.0			
200 Mesh	75	15.50	46.5			
270 Mesh	53	10.70	35.8			
400 Mesh	38	8.00	27.8			
TOTAL		100.00	**			

TABLE III-3 SCREEN ANALYSIS KM4508 ED Composite - 15 Minute Grind Calibration

K80= 146µm

Note: 15 min. grind calibration using 2 kg. Ore, 1000 ml water and 20 kg. of Mild Steel rods in Mill: M5

Project and Test number: KM4508-08	Measured Kevin	by:	Me a Frid	asured: day, May 15, 2015 1:00:52 PM	1
Sample Name:	Edited by:		Ana	alysed:	
Copper Regrind Discharge - Ave	erage Kevin	Frid	day, May 15, 2015 1:00:53 PM	1	
Particle Name: Silica 0.1 Particle RI: 1.544 Dispersant Name: Water	Accessor Hydro 200 Absorptic 0.1 Dispersar 1.330	y Name: 00MU (A) on: nt RI:	Ana Ger Siz 0.1 We 0.3	alysis model: neral purpose re range: 00 to 1000.000 un nighted Residual: 25 %	Sensitivity: Normal Obscuration: n 15.96 % Result Emulation: Off
Concentration: 0.0161 %Vol	Span : 3.391		Un i 1.0	iformity: 8	Result units: Volume
Specific Surface Area: 0.989 m²/g	Surface V 6.069	Veighted Mean D[3,2] um	: Vol 38.	I . Weighted Mean D[4,3]: 713 um	
d(0.1): 2.379 um	d(0.5): 26.923 um	d(0.8): 69.428	um d	(0.9): 93.669 um d(0.9	98): 135.98 um
		Particle Size	Distribution		110
6 5.5 5 4.5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0.1		1	0	100	100 90 80 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 - 1000
		Particle S	ize (µm)		
Size (µm) Volume In % 0.100 0.00 0.110 0.00 0.120 0.00 0.132 0.00 0.145 0.00 0.145 0.00 0.145 0.00 0.174 0.00 0.191 0.00 0.209 0.00 0.225 0.00 0.275 0.00 0.302 0.00 0.331 0.01 0.363 0.09 0.338 0.14	Size (μm) Volume In % 0.479 0.33 0.525 0.39 0.575 0.45 0.631 0.45 0.632 0.52 0.759 0.52 0.832 0.53 0.912 0.53 1.000 0.52 1.202 0.52 1.318 0.54 1.445 0.54 1.585 0.60 1.738 0.65 1.905 0.70	Size (μm) Volume In % 2.291 0.82 2.512 0.88 2.754 0.94 3.020 0.99 3.311 1.05 3.631 1.10 3.981 1.10 4.365 1.15 5.724 1.31 5.754 1.31 5.754 1.36 6.310 1.42 6.918 1.47 7.586 1.53 8.318 1.53 9.120 1.59 9.120 1.65	Size (μm) Volume 10.965 12.023 13.183 14.454 15.849 17.378 19.055 20.893 22.909 25.119 27.542 30.200 33.113 36.308 39.811 43.652	Inf Size (µm) Volume In % 1.75 52.481 3.31 1.79 57.544 3.37 1.84 69.183 3.36 1.87 75.858 3.14 1.95 91.201 2.63 2.05 109.648 1.91 2.05 109.648 1.91 2.21 120.226 1.91 2.31 144.544 0.82 2.59 173.780 0.03 2.75 190.546 0.00 3.97 2.08330 0.000	Size (µm) Volume In % 251.189 0.00 275.423 0.00 301.995 0.00 331.131 0.00 338.107 0.00 436.516 0.00 436.517 0.00 524.807 0.00 630.957 0.00 631.831 0.00 758.578 0.00 831.764 0.00 912.011 0.00 1000.000
0.437 0.26	2.291 0.76	10.965	52.481	3.21 <u>225.007</u> 0.00 251.189	

Operator notes:

Project and Test number:	Measured by:	Measured:	PM			
KM4508-09	Kevin	Wednesday, May 20, 2015 12:07:39 F				
Sample Name:	Edited by:	Analysed:				
Copper Regrind Discharge - Average	Kevin	Wednesday, May 20, 2015 12:07:41 F	PM			
Particle Name:	Accessory Name:	Analysis model:	Sensitivity:			
Silica 0.1	Hydro 2000MU (A)	General purpose	Normal			
Particle RI:	Absorption:	Size range:	Obscuration:			
1.544	0.1	0.100 to 1000.000 um	19.58 %			
Dispersant Name:	Dispersant RI:	Weighted Residual:	Result Emulation:			
Water	1.330	0.300 %	Off			
Concentration:	Span :	Uniformity:	Result units:			
0.0173 %Vol	3.198	1.01	Volume			
Specific Surface Area:	Surface Weighted Mean D[3,2]:	Vol. Weighted Mean D[4,3]:				
1.14 m²/g	5.248 um	27.176 um				
d(0.1): 1.987 um d(0.5): 19.	^{560 um} d(0.8): 47.625 um	d(0.9): 64.532 um d(0.98):	94.48 um			
6 5.5 5 4.5	Particle Size Distribution		110 100 90 80			

(%) 4 3.5 3 2.5 2 1.5 1 0.5 0.1		1 10 Particle Size		- 70 - 60 - 50 - 40 - 30 - 20 - 10 - 00
Size (μm) Volume In 9 0.100 0.00 0.110 0.00 0.120 0.00 0.132 0.00 0.145 0.00 0.158 0.00 0.174 0.00 0.191 0.00 0.229 0.00 0.225 0.00 0.302 0.00 0.363 0.10 0.398 0.11 0.398 0.11	King Size (µm) Volume In 9 0 0.479 0.3 0 0.525 0.4 0 0.575 0.5 0 0.631 0.5 0 0.632 0.6 0 0.759 0.6 0 0.759 0.6 0 0.832 0.6 0 0.912 0.6 0 1.000 0.6 0 1.022 0.6 0 1.202 0.6 0 1.202 0.6 0 1.202 0.6 0 1.202 0.6 0 1.202 0.6 0 1.202 0.6 0 1.445 0.6 1 1.738 0.7 0 1.905 0.8 9 2.291 0.8	Size (µm) Volume In % S 2.291 0.95 2.512 0.95 2.2754 1.09 3.020 1.15 3.031 1.15 3.311 1.22 2.3.631 1.28 3.3 4.365 3.3 4.365 3.3 5.248 3.3 5.248 3.3 6.310 3.3 6.310 3.3 6.310 3.3 1.77 7.586 1.77 7.7 8.318 1.77 9.120 3.83 1.94	Ze (µm) Volume In % Size (µm) 10.965 2.00 52.481 12.023 2.06 63.096 14.454 2.22 75.858 17.378 2.31 83.176 19.055 2.42 91.201 20.893 2.54 100.000 22.909 2.68 109.648 25.119 2.97 120.226 27.542 3.12 134.544 30.200 3.24 158.489 36.308 3.34 173.780 39.811 3.40 190.546 43.652 3.36 229.087 52.481 3.25 251.189	Volume In % Size (µm) Volume In % 3.08 251.189 0.00 2.84 201.995 0.00 2.55 331.131 0.00 2.23 331.131 0.00 1.88 398.107 0.00 1.51 436.516 0.00 1.54 398.107 0.00 1.51 436.516 0.00 0.41 575.440 0.00 0.11 630.957 0.00 0.00 691.831 0.00 0.00 831.764 0.00 0.00 912.011 0.00 0.00 912.011 0.00

Operator notes:

Project an KM4508-10	o d Test i D	number:		Measured Kevin	l by:			Measured: Wednesda	: y, May 20, 2	2015 12:46:5	0 PM		
Copper Re	ample Name: Edited by:							Analysed: Wednesday, May 20, 2015 12:46:51 PM					
Particle Name:Accessory NSilica 0.1Hydro 2000MParticle RI:Absorption:1.5440.1Dispersant Name:Dispersant IWater1.330				sory Name: 2000MU (A) ption: rsant RI:			Analysis r General pu Size range 0.100 Weighted 0.298	nodel: urpose e: to 1000 Residual: %	Sensit Norma Obscu 17.42 Result Off	ivity: ration: % Emulation:			
Concentra 0.0144	ation: %Vol			Span : 2.821				Uniformity 0.89	y:		Resul t Volume	a units:	
Specific S 1.21	m²/g	Area:		Surface 4.970	Weighted N um	lean D[3,2]:		Vol. Weigl 21.201	h ted Mean I um	D[4,3]:			
d(0.1): 1	1.916	um	d(0.5): 1	6.356 um	d(0.8):	35.752	um	d(0.9): 4	8.050 um	d(0.98): 71.79	um	
					Pa	article Size D	Distribution				110		
	Volume (%)	6 5 4 3 2 1 0.1		1		10		1	00		100 90 80 70 60 50 40 30 20 1000		
					P	article Siz	e (µm)						
5	Size (µm) 0.100 0.110 0.120 0.120 0.135 0.158 0.174 0.191 0.209 0.251 0.275 0.302 0.331 0.363 0.393 0.437 0.479	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Size (µm) 0.479 0.525 0.575 0.631 0.692 0.759 0.832 0.912 1.000 1.096 1.202 1.318 1.445 1.585 1.738 1.905 2.089 2.291	Volume In % 0.40 0.47 0.54 0.59 0.63 0.65 0.65 0.65 0.65 0.64 0.64 0.64 0.64 0.64 0.69 0.73 0.79 0.86 0.93	Size (µm) 2.291 2.512 2.754 3.020 3.311 3.631 3.981 4.365 4.786 5.248 5.754 6.310 6.918 7.586 8.318 9.120 10.000 10.965	Volume In % 1.00 1.08 1.16 1.23 1.31 1.38 1.44 1.51 1.51 1.57 1.63 1.70 1.76 1.83 1.91 2.00 2.10 2.22	Size (µm) 10.965 12.023 13.183 14.454 15.849 17.378 19.055 20.893 22.909 25.119 27.542 30.200 33.113 36.308 39.811 43.652 47.863 52.481	Volume In % 2.36 2.51 2.68 2.85 3.04 3.23 3.40 3.55 3.66 3.73 3.74 3.69 3.57 3.37 3.37 3.37 3.12 2.81 2.46	Size (µm) 52.481 57.544 63.096 69.183 75.558 83.176 91.201 100.000 109.648 120.226 131.826 144.544 158.489 173.780 190.546 208.930 229.087 251.189	Volume In % 2.10 1.73 1.37 1.02 0.75 0.54 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Size (µm) 251.189 275.423 301.995 331.131 363.078 398.107 436.516 478.630 524.807 575.440 630.957 691.831 758.578 831.764 912.011 1000.000	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	

Project and Test number: KM4508-13 Sample Name: Copper Regrind Discharge	Measured quentin Edited by Average quentin	by: :	Measured: Monday, June 01, 2015 3:11:26 PM Analysed: Monday, June 01, 2015 3:11:27 PM					
Particle Name:Accessory Name:Silica 0.1Hydro 2000MU (A)Particle RI:Absorption:1.5440.1Dispersant Name:Dispersant RI:Water1.330				Analysis model:Sensitivity:General purposeNormalSize range:Obscuration:0.100to 1000.000um30.33%Weighted Residual:Result Emulation:0.099%Off				ity: ation: % imulation:
Concentration: 0.0126 %Vol	Span : 2.777			Uniformity: 0.868	:		Result ι Volume	ınits:
Specific Surface Area:3.53m²/g	Surface \ 1.698	Weighted Mean D[3,2]: um		Vol. Weight 5.586	t ed Mean D[4 um	l,3]:		
d(0.1): 0.641 um	d(0.5): 4.240 um	d(0.8): 9.033	um	d(0.9): 12	.415 um	d(0.98):	19.62	um
		Particle Size	Distribution				_ 110	
6 5 (%) 4 3 2 1 0.1	1	10		10	0		- 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 000	
		Particle Siz	e (µm)					
Size (µm) Volume In % 0.100 0.0 0.110 0.0 0.120 0.0 0.132 0.0 0.145 0.1 0.145 0.1 0.174 0.1 0.191 0.2 0.209 0.3 0.225 0.4 0.275 0.5 0.302 0.6 0.331 0.7 0.363 0.7 0.398 0.437	Size (µm) Volume In % 0.479 0.99 0.525 1.04 0.631 1.09 0.632 1.13 0.692 1.13 0.632 1.19 0.632 1.22 0.912 1.25 4 1.000 1.29 1.34 1.318 1.41 5 1.445 1.585 1.60 1.585 1.72 1.1738 1.86 3.2005 2.089 2.089 2.19	Size (µm) Volume In % 2.291 2.36 2.512 2.55 2.754 2.74 3.020 2.74 3.031 2.92 3.311 3.11 3.631 3.28 3.981 3.28 4.365 3.44 4.365 3.68 5.248 3.68 5.754 3.75 5.754 3.76 6.918 3.70 7.586 3.58 8.318 3.58 9.120 3.20 10.000 2.94	Size (µm) 10.965 12.023 13.183 14.454 15.849 17.378 19.055 20.893 22.909 25.119 27.542 30.200 33.113 36.308 39.811 43.652 47.863	Volume In % 2.66 2.35 2.02 1.70 1.39 1.09 0.83 0.60 0.41 0.26 0.12 0.07 0.01 0.00 0.00 0.00 0.00 0.00	Size (µm) Volt 52.481 57.544 63.096 69.183 75.858 83.176 91.201 100.000 109.648 120.226 131.826 144.544 158.489 173.780 190.546 208.930 229.087	me In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Size (µm) V 251.189 275.423 301.995 331.131 363.078 398.107 436.516 478.630 524.807 575.440 630.957 691.831 758.578 831.764 912.011 1000.000	(olume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Measured by: Kevin Edited by: erage Kevin	Measured: Thursday, June 04, 2015 1:13:12 PM Analysed: Thursday, June 04, 2015 1:13:13 PM					
Accessory Nam Hydro 2000MU (Absorption: 0.1 Dispersant RI: 1.330	Analysis model:Sensitivity:General purposeNormalSize range:Obscuration:0.100to 1000.000um26.55%Weighted Residual:Result Emulation:0.096%Off					
Span : 2.928		Uniformity: 1.7	Result units: Volume			
Surface Weight 2.470 um	ed Mean D[3,2]:	Vol. Weighted Mean D[4,3]: 12.286 um				
d(0.5): 5.701 um d(0 .	8): 12.433 um	d(0.9): 17.598 um d(0.98):	34.28 um			
	Particle Size Distribution		<u> </u>			
			100 90 80 70 60			
			- 50 - 40 - 30 - 20 - 10 0			
1	10	100	1000			
	Particle Size (µm)					
Size (µm) voume in % Size (0.479 0.82 2. 0.525 0.89 2. 0.575 0.96 2. 0.631 1.01 3. 0.692 1.05 3. 0.759 1.05 3. 0.832 1.09 3. 0.912 1.11 3. 0.912 1.13 4. 1.000 1.15 5. 1.202 1.18 5. 1.202 1.18 5. 1.202 1.18 5. 1.318 1.28 6. 1.585 1.35 6. 1.585 1.44 8. 1.905 1.65 9. 2.089 1.02 10.	Inny Volume in % Size (µm) 291 1.93 10.965 512 2.08 12.023 754 2.04 13.183 020 2.40 14.454 311 2.56 17.378 981 2.73 19.055 365 3.07 22.909 248 3.23 25.119 754 3.49 30.200 918 3.65 33.113 586 3.68 39.811 120 3.66 43.652 000 2.40 47.863	Volume In % Size (µm) Volume In % 3.33 57.544 0.08 3.12 63.096 0.07 2.87 69.183 0.06 2.59 75.858 0.05 1.98 91.201 0.03 1.67 100.000 0.03 1.38 109.648 0.01 1.10 120.226 0.00 0.86 131.826 0.00 0.48 144.544 0.00 0.35 173.780 0.00 0.17 208.930 0.00 0.13 208.930 0.00	Size (µm) volume in % 251.189 0.00 275.423 0.00 301.995 0.00 331.131 0.01 363.078 0.04 398.107 0.04 398.107 0.04 524.807 0.08 575.440 0.08 691.831 0.00 758.578 0.07 912.011 0.02 1000.000			
	Measured by: Kevin Kevin Edited by:	Measured by: Kevin Kevin Edited by: ************************************	Measured by: Measured: Kevin Thursday, June 04, 2015 1:13:12 PM Edited by: Analysis model: Hydro 2000MU (A) General purpose Accessory Name: Analysis model: Hydro 2000MU (A) General purpose Absorption: Size range: 0.1 0.10 Dispersant RI: Weighted Residual: 1.330 0.996 % Span : 1.7 Surface Weighted Mean D[3,2]: 2.928 2.470 um d(0.5): 5.701 um d(0.5): 5.701 um d(0.6): 5.701 um d(0.6): 5.701 um d(0.7): 5.701 um d(0.8): 12.433 um d(0.9): 17.598 um d(0.5): 5.701 um d(0.7): 5.701 um d(0.8): 12.433 um d(0.7): 5.701 um d(0.8): 12.433 um d(0.7): 5.701 um d(0.8): 12.433 um d(0.7): 5.701			

Project and Test number:Measured by:KM4508-16KevinSample Name:Edited by:Copper Regrind Discharge - AverageKevin						Measured: Tuesday, June 16, 2015 7:59:52 AM Analysed: Tuesday, June 16, 2015 7:59:54 AM				
Particle Name:Accessory Name:Silica 0.1Hydro 2000MU (A)Particle RI:Absorption:1.5440.1Dispersant Name:Dispersant RI:Water1.330					Analysis model:Sensitivity:General purposeNormalSize range:Obscuration:0.100to 1000.000um14.74%Weighted Residual:Result Emulation:0.444%Off				ivity: l iration: % Emulation:	
		Span : 3.016				Uniformity 0.964	/:		Resul t Volume	t units: e
Area:		Surface V 6.910	Veighted M um	ean D[3,2]:		Vol. Weig h 39.542	um	[4,3]:		
um	d(0.5): 29	.639 um	d(0.8):	69.760	um	d(0.9): 92	2.301 um	d(0.98)	: 131.09	um
			Pa	rticle Size D	istribution				110	
6 5 4 3 2 1 0.1				10		10			100 90 80 70 60 50 40 30 20 100	
			Pa	article Size	e (µm)					
Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Size (μm) 0.479 0.525 0.575 0.631 0.692 0.759 0.832 0.912 1.000 1.202 1.318 1.445 1.585 1.738 1.905 2.089	Volume In % 0.27 0.32 0.38 0.41 0.44 0.45 0.45 0.45 0.45 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.45 0.47 0.50 0.55 0.60 0.65	Size (µm) 1 2.291 2.512 2.754 3.020 3.311 3.631 3.681 4.365 4.786 5.248 5.754 6.310 6.918 7.586 8.318 9.120 10.000 10.000	Volume In % 0.71 0.77 0.83 0.89 0.96 1.02 1.08 1.14 1.20 1.26 1.33 1.39 1.46 1.52 1.59 1.64 1.70	Size (µm) 10.965 12.023 13.183 14.454 15.849 17.378 19.055 20.893 22.909 25.119 27.542 30.200 33.113 36.308 39.811 43.652 47.863	Volume In % 1.75 1.79 1.83 1.86 1.90 1.94 1.99 2.06 2.15 2.26 2.40 2.57 2.75 2.95 3.15 3.34 3.50	Size (μm) Vc 52.481 57.544 63.096 69.183 75.858 83.176 91.201 100.000 109.648 120.226 131.826 144.544 158.489 173.780 190.546 208.930 229.087	Jume In % 3.61 3.67 3.64 3.54 3.35 3.07 2.73 2.33 1.91 1.49 1.07 0.62 0.22 0.01 0.00 0.00	Size (µm) 251.189 275.423 301.995 331.131 363.078 398.107 436.516 478.630 524.807 575.440 630.957 691.831 758.578 831.764 912.011 1000.000	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	Area: um 6 5 4 3 2 1 0 0.1 Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	volume In % Size (µm) 0 0.00 0 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 </td <td>number: Measured Kevin Edited by: scharge - Average Kevin Accessor Hydro 200 Absorptio 0.1 Accessor Hydro 200 Absorptio 0.1 Measured Kevin Measured Kevin Measured Kevin Accessor Hydro 200 Absorptio 0.1 Measured Measured Measured Network Measured Kevin Accessor Hydro 200 Absorptio 0.1 Measured Measured Network Measured Measured Network Span : 3.016 Span : 3.016 Span : 3.016 Measured Measured Network Measured Measured Network Measured Measured Network Measured Network Span : 3.016 Span : 3.016 Measured Measured Network Measured Measured Network Measured Measured Network Measured Measured Network Measured Measured Network Measured Measure Network Span : 3.016 Measure Measure Network Measure Measure Network Measure Measure Network Measure Measure Network Mea</td> <td>Number: Measured by: Kevin Edited by: Scharge - Average scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Dispersant RI: 1.330 Area: Surface Weighted M 0.1 Um um d(0.5): 29.639 um d(0.8): um d(0.5): 29.639 um d(0.8): 0.1 Um Um d(0.8): Pa 0.1 Um d(0.4): Pa 0.10 Um d(0.8): Pa 0.10 Um Hydro 2000 Pa 0.10 Um Size (um) V</td> <td>number: Measured by: Kevin Edited by: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Absorption: 0.1 Dispersant RI: 1.330 0.1 span : 3.016 Span : 3.016 Area: Surface Weighted Mean D[3,2]: 6.910 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.6): Particle Size D 0 Particle Size D 0 Particle Size D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>number: Measured by: Kevin Edited by: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Absorption: 0.1 O.1 Dispersant RI: 1.330 Area: Surface Weighted Mean D[3,2]: 6.910 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.5): 29.639 um Dispersant Ri: 1.330 Dispersant Ri: 1.330 um d(0.5): 29.639 um Dispersant Ri: 3.016 Dispersant Ri: 1.330 Dispersant Ri: 3.016 Dispersant Ri: 1.330 um d(0.5): 29.639 um Dispersant Ri: 0.1 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Station Ri Station Ri 2572 Dispersant Ri 3.331 Ri 0.000 Dispersant Ri</td><td>Number: Measured by: Kevin Measured by: Tuesday, J Edited by: Analysed: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) General pu General pu Absorption: 0.1 Size range 0.1 Span : J.3016 0.100 Area: Surface Weighted Mean D[3,2]: 6.910 Weighted J Um d(0.5): 29.639 um d(0.8): 9.542 69.760 um d(0.5): 29.639 um d(0.8): 2512 69.760 um d(0.9): 9 0 0.1 10 10 10 10 0 0.1 10 10 10 0 0.575 0.27 0.575 0.38 1.52 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.575 0.37 0.38 1.52 1.73 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.675 0.37</td><td>Number: Measured by: Kevin Measured by: Tuesday, June 16, 2015 Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 Accessory Name: Hydro 2000MU (A) Absorption: Analysis model: General purpose General purpose Joint Dispersant RI: 1.330 Uniformity: 0.444 Measured by: General purpose Area: Surface Weighted Mean D[3,2]: 0.3016 Vol. Weighted Mean D[3,2]: 0.9542 Vol. Weighted Mean D[3,2]: 0.954 Vol. Weighted Mean D[3,2]: 0.955 Vol. Weighted Mean D[3,2]: 0.956<td>Number: Measured by: Kevin Measured: Tuesday, June 16, 2015 7:59:52 AW Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 7:59:54 AW Accessory Name: Analysis model: General purpose Hydro 2000MU (A) General purpose Size range: 0.1 0.100 to 1000.000 um Wighted Residual: 0.3016 0.444 Area: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 3.016 0.964 0.99.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.9) 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td>Number: Measured by: Kevin Measures: Tuesday, June 16, 2015 7:59:52 AM Edited by: Analysis model: Sensitive General purpose Sensitive Norma Accessory Name: Analysis model: Sensitive General purpose Norma Absorption: Size range: 0.100 to 1000.000 um 14.74 1.330 Uniformity: Result Off span: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 39.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.98): 131.09 0 Particle Size Distribution 100 100 100 0 Particle Size Distribution 100 100 100 0 Particle Size (µm) 100 100 100 100 0 0.077 0.33 2.274 0.73 13.18 13.83 13.95 0 0.077 0.33 2.274 0.73 13.19 100 100 100 0 0.077 0.33 2.274 0.73 13.19 100 100 100 100</td></td<></td></td></t<></td>	number: Measured Kevin Edited by: scharge - Average Kevin Accessor Hydro 200 Absorptio 0.1 Accessor Hydro 200 Absorptio 0.1 Measured Kevin Measured Kevin Measured Kevin Accessor Hydro 200 Absorptio 0.1 Measured Measured Measured Network Measured Kevin Accessor Hydro 200 Absorptio 0.1 Measured Measured Network Measured Measured Network Span : 3.016 Span : 3.016 Span : 3.016 Measured Measured Network Measured Measured Network Measured Measured Network Measured Network Span : 3.016 Span : 3.016 Measured Measured Network Measured Measured Network Measured Measured Network Measured Measured Network Measured Measured Network Measured Measure Network Span : 3.016 Measure Measure Network Measure Measure Network Measure Measure Network Measure Measure Network Mea	Number: Measured by: Kevin Edited by: Scharge - Average scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Dispersant RI: 1.330 Area: Surface Weighted M 0.1 Um um d(0.5): 29.639 um d(0.8): um d(0.5): 29.639 um d(0.8): 0.1 Um Um d(0.8): Pa 0.1 Um d(0.4): Pa 0.10 Um d(0.8): Pa 0.10 Um Hydro 2000 Pa 0.10 Um Size (um) V	number: Measured by: Kevin Edited by: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Absorption: 0.1 Dispersant RI: 1.330 0.1 span : 3.016 Span : 3.016 Area: Surface Weighted Mean D[3,2]: 6.910 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.6): Particle Size D 0 Particle Size D 0 Particle Size D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>number: Measured by: Kevin Edited by: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Absorption: 0.1 O.1 Dispersant RI: 1.330 Area: Surface Weighted Mean D[3,2]: 6.910 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.5): 29.639 um Dispersant Ri: 1.330 Dispersant Ri: 1.330 um d(0.5): 29.639 um Dispersant Ri: 3.016 Dispersant Ri: 1.330 Dispersant Ri: 3.016 Dispersant Ri: 1.330 um d(0.5): 29.639 um Dispersant Ri: 0.1 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Station Ri Station Ri 2572 Dispersant Ri 3.331 Ri 0.000 Dispersant Ri</td><td>Number: Measured by: Kevin Measured by: Tuesday, J Edited by: Analysed: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) General pu General pu Absorption: 0.1 Size range 0.1 Span : J.3016 0.100 Area: Surface Weighted Mean D[3,2]: 6.910 Weighted J Um d(0.5): 29.639 um d(0.8): 9.542 69.760 um d(0.5): 29.639 um d(0.8): 2512 69.760 um d(0.9): 9 0 0.1 10 10 10 10 0 0.1 10 10 10 0 0.575 0.27 0.575 0.38 1.52 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.575 0.37 0.38 1.52 1.73 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.675 0.37</td><td>Number: Measured by: Kevin Measured by: Tuesday, June 16, 2015 Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 Accessory Name: Hydro 2000MU (A) Absorption: Analysis model: General purpose General purpose Joint Dispersant RI: 1.330 Uniformity: 0.444 Measured by: General purpose Area: Surface Weighted Mean D[3,2]: 0.3016 Vol. Weighted Mean D[3,2]: 0.9542 Vol. Weighted Mean D[3,2]: 0.954 Vol. Weighted Mean D[3,2]: 0.955 Vol. Weighted Mean D[3,2]: 0.956<td>Number: Measured by: Kevin Measured: Tuesday, June 16, 2015 7:59:52 AW Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 7:59:54 AW Accessory Name: Analysis model: General purpose Hydro 2000MU (A) General purpose Size range: 0.1 0.100 to 1000.000 um Wighted Residual: 0.3016 0.444 Area: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 3.016 0.964 0.99.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.9) 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td>Number: Measured by: Kevin Measures: Tuesday, June 16, 2015 7:59:52 AM Edited by: Analysis model: Sensitive General purpose Sensitive Norma Accessory Name: Analysis model: Sensitive General purpose Norma Absorption: Size range: 0.100 to 1000.000 um 14.74 1.330 Uniformity: Result Off span: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 39.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.98): 131.09 0 Particle Size Distribution 100 100 100 0 Particle Size Distribution 100 100 100 0 Particle Size (µm) 100 100 100 100 0 0.077 0.33 2.274 0.73 13.18 13.83 13.95 0 0.077 0.33 2.274 0.73 13.19 100 100 100 0 0.077 0.33 2.274 0.73 13.19 100 100 100 100</td></td<></td></td></t<>	number: Measured by: Kevin Edited by: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Absorption: 0.1 O.1 Dispersant RI: 1.330 Area: Surface Weighted Mean D[3,2]: 6.910 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.5): 29.639 um d(0.5): 29.639 um Dispersant Ri: 1.330 Dispersant Ri: 1.330 um d(0.5): 29.639 um Dispersant Ri: 3.016 Dispersant Ri: 1.330 Dispersant Ri: 3.016 Dispersant Ri: 1.330 um d(0.5): 29.639 um Dispersant Ri: 0.1 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.330 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Dispersant Ri: 1.331 Station Ri Station Ri 2572 Dispersant Ri 3.331 Ri 0.000 Dispersant Ri	Number: Measured by: Kevin Measured by: Tuesday, J Edited by: Analysed: scharge - Average Kevin Accessory Name: Hydro 2000MU (A) General pu General pu Absorption: 0.1 Size range 0.1 Span : J.3016 0.100 Area: Surface Weighted Mean D[3,2]: 6.910 Weighted J Um d(0.5): 29.639 um d(0.8): 9.542 69.760 um d(0.5): 29.639 um d(0.8): 2512 69.760 um d(0.9): 9 0 0.1 10 10 10 10 0 0.1 10 10 10 0 0.575 0.27 0.575 0.38 1.52 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.575 0.37 0.38 1.52 1.73 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.675 0.37 0.38 1.52 1.73 0.00 0.675 0.37	Number: Measured by: Kevin Measured by: Tuesday, June 16, 2015 Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 Accessory Name: Hydro 2000MU (A) Absorption: Analysis model: General purpose General purpose Joint Dispersant RI: 1.330 Uniformity: 0.444 Measured by: General purpose Area: Surface Weighted Mean D[3,2]: 0.3016 Vol. Weighted Mean D[3,2]: 0.9542 Vol. Weighted Mean D[3,2]: 0.954 Vol. Weighted Mean D[3,2]: 0.955 Vol. Weighted Mean D[3,2]: 0.956 <td>Number: Measured by: Kevin Measured: Tuesday, June 16, 2015 7:59:52 AW Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 7:59:54 AW Accessory Name: Analysis model: General purpose Hydro 2000MU (A) General purpose Size range: 0.1 0.100 to 1000.000 um Wighted Residual: 0.3016 0.444 Area: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 3.016 0.964 0.99.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.9) 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td>Number: Measured by: Kevin Measures: Tuesday, June 16, 2015 7:59:52 AM Edited by: Analysis model: Sensitive General purpose Sensitive Norma Accessory Name: Analysis model: Sensitive General purpose Norma Absorption: Size range: 0.100 to 1000.000 um 14.74 1.330 Uniformity: Result Off span: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 39.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.98): 131.09 0 Particle Size Distribution 100 100 100 0 Particle Size Distribution 100 100 100 0 Particle Size (µm) 100 100 100 100 0 0.077 0.33 2.274 0.73 13.18 13.83 13.95 0 0.077 0.33 2.274 0.73 13.19 100 100 100 0 0.077 0.33 2.274 0.73 13.19 100 100 100 100</td></td<></td>	Number: Measured by: Kevin Measured: Tuesday, June 16, 2015 7:59:52 AW Edited by: Analysed: scharge - Average Kevin Tuesday, June 16, 2015 7:59:54 AW Accessory Name: Analysis model: General purpose Hydro 2000MU (A) General purpose Size range: 0.1 0.100 to 1000.000 um Wighted Residual: 0.3016 0.444 Area: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 3.016 0.964 0.99.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.9) 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 0.1 1 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td>Number: Measured by: Kevin Measures: Tuesday, June 16, 2015 7:59:52 AM Edited by: Analysis model: Sensitive General purpose Sensitive Norma Accessory Name: Analysis model: Sensitive General purpose Norma Absorption: Size range: 0.100 to 1000.000 um 14.74 1.330 Uniformity: Result Off span: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 39.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.98): 131.09 0 Particle Size Distribution 100 100 100 0 Particle Size Distribution 100 100 100 0 Particle Size (µm) 100 100 100 100 0 0.077 0.33 2.274 0.73 13.18 13.83 13.95 0 0.077 0.33 2.274 0.73 13.19 100 100 100 0 0.077 0.33 2.274 0.73 13.19 100 100 100 100</td></td<>	Number: Measured by: Kevin Measures: Tuesday, June 16, 2015 7:59:52 AM Edited by: Analysis model: Sensitive General purpose Sensitive Norma Accessory Name: Analysis model: Sensitive General purpose Norma Absorption: Size range: 0.100 to 1000.000 um 14.74 1.330 Uniformity: Result Off span: Surface Weighted Mean D[3,2]: Vol. Weighted Mean D[4,3]: 39.542 um um d(0.5): 29.639 um d(0.8): 69.760 um d(0.9): 92.301 um d(0.98): 131.09 0 Particle Size Distribution 100 100 100 0 Particle Size Distribution 100 100 100 0 Particle Size (µm) 100 100 100 100 0 0.077 0.33 2.274 0.73 13.18 13.83 13.95 0 0.077 0.33 2.274 0.73 13.19 100 100 100 0 0.077 0.33 2.274 0.73 13.19 100 100 100 100

Project and Test number:Measured by:KM4508-17quentinSample Name:Edited by:Copper Regrind Discharge V - Averagequentin						Measured: Tuesday, June 16, 2015 1:12:07 PM Analysed: Tuesday, June 16, 2015 1:12:08 PM					
Particle Name:AcceSilica 0.1HydrParticle RI:Abso1.5440.1Dispersant Name:DispWater1.33				Accessory Name: Hydro 2000MU (A) Absorption: 0.1 Dispersant RI: 1.330				Analysis model:General purposeSize range:0.100to 1000.000Weighted Residual:0.451%			ivity: I iration: % Emulation:
Concentration	: /ol		Span : 4.732				Uniformity 1.47	/:		Resul t Volum	t units: e
Specific Surfac 1.33 m ²	ce Area: /g		Surface \ 4.525	Weighted N um	lean D[3,2]	:	Vol. Weigł 32.171	um	D[4,3]:		
d(0.1): 1.557	um	d(0.5): 17	.618 um	d(0.8):	59.822	um	d(0.9): 8	4.927 um	d(0.98)	: 128.79	um
Volume (%)	5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.1		1		article Size	Distribution		00		110 90 80 70 60 50 40 30 20 10 0	
					Particle S	size (µm)_					
Size (µ) 0.10 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.23 0.33 0.33	Volume In % 0 0.00 0 0.00 00 0.00 10 0.00 10 0.00 12 0.00 15 0.00 15 0.00 16 0.00 17 0.00 19 0.00 10 0.00 11 0.00 12 0.00 13 0.14 14 0.28 15 0.37	Size (μm) 0.479 0.525 0.575 0.631 0.692 0.759 0.832 0.912 1.000 1.096 1.202 1.318 1.445 1.585 1.738 1.905 2.089 2.291	Volume In % 0.48 0.57 0.65 0.71 0.75 0.77 0.78 0.77 0.77 0.76 0.77 0.76 0.77 0.78 0.77 0.78 0.77 0.78 0.81 0.85 0.91 0.97 1.04	Size (µm) 2.291 2.512 2.754 3.020 3.311 3.631 3.981 4.365 4.786 5.248 5.754 6.310 6.918 7.586 8.318 9.120 10.000 10.965	Volume In % 1.11 1.18 1.24 1.31 1.37 1.42 1.47 1.52 1.56 1.61 1.65 1.69 1.73 1.77 1.81 1.84 1.84 1.87	Size (µm) 10.965 12.023 13.183 14.454 15.849 17.378 19.055 20.893 22.909 25.119 27.542 30.200 33.113 36.308 39.811 43.652 47.863 52.481	Volume In % 1.90 1.92 1.93 1.93 1.93 1.94 1.94 1.95 1.96 1.99 2.03 2.08 2.16 2.25 2.36 2.47 2.57 2.66	Size (µm) Y 52.481 57.544 63.096 69.183 75.858 83.176 91.201 100.000 109.648 120.226 131.826 144.544 158.489 173.780 190.546 208.930 229.087 251.189	Volume In % 2.72 2.75 2.72 2.64 2.50 2.31 2.06 1.78 1.48 1.17 0.87 0.58 0.27 0.02 0.00 0.00 0.00	Size (µm) 251.189 275.423 301.995 331.131 363.078 398.107 436.516 478.630 524.807 575.440 630.957 691.831 758.578 831.764 912.011 1000.000	Volume In % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
APPENDIX IV – KM4508

COMMINUTION DATA

INDEX

TABLE	<u>P</u>	AGE
IV-1	Bond Abrasion Test – ED Composite	1
IV-2	Bond Ball Grindability Test – ED Composite	3

TABLE IV-1A BOND ABRASION TEST KM4508 ED Composite

Original Paddle Weight:	95.1001 g
Final Paddle Weight:	94.9568 g

Abrasion Index, A _i :	0.1433
----------------------------------	--------

Wear Material	Wear Equation	Predicted Wear Rates		
wear material		lb/kwh	kg/kwh	
Wet rod mill, rods	0.35*(Ai-0.020)^0.20	0.230	0.104	
Wet rod mill, liners	0.035*(Ai-0.015)^0.30	0.019	0.009	
Wet ball mill, balls	0.35*(Ai-0.015)^0.33	0.178	0.081	
Wet ball mill, liners	0.026*(Ai-0.015)^0.30	0.014	0.006	
Dry ball mill, balls	0.05*(Ai)^0.5	0.019	0.009	
Dry ball mill, liners	0.005*(Ai)^0.5	0.0019	0.0009	
Crusher, liners	(Ai+0.22)/11	0.033	0.015	
Roll Crusher, shells	(Ai/10)^0.67	0.058	0.026	

Total Feed Weight	
P = 80% Passing size of test product	

1598 g 13767 μm

Product	Weight (g) Retained	Particle Size µm	Weight % Retained	Cumulative % Passing
3/4 Mesh	0.00	18845	0.00	100.0
5/8 Mesh	16.10	16000	1.01	99.0
1/2 Mesh	466.90	12500	29.23	69.8
7/16 Mesh	332.10	11200	20.79	49.0
3/8 Mesh	162.10	9500	10.15	38.8
3 Mesh	136.60	6300	8.55	30.3
4 Mesh	48.80	4750	3.05	27.2
6 Mesh	46.30	3360	2.90	24.3
TOTAL	1597.6		100.00	**

TABLE IV-1B BOND ABRASION SCREEN ANALYSIS KM4508 ED Composite

 $K80 = 13767 \mu m$

TABLE IV-2A BOND BALL GRINDABILITY TEST KM4508 ED Composite

Weight of 700 ml Sample :	1976.4 g	Aperture Test Sieve :	106µm
1/3.5 of Sample Weight :	564.7 g	Percent Undersize :	12.9%

Cycle	Weight of	Number of	Weight of Undersize			
Cycle	New Feed	Revolutions	Product	Feed	Net Product	Net/Rev
1	1976.4	100	415.5	254.8	160.7	1.61
2	415.5	318	527.3	53.6	473.7	1.49
3	527.3	334	579.6	68.0	511.6	1.53
4	579.6	319	577.2	74.7	502.5	1.57
5	577.2	312	572.4	74.4	498.0	1.60
6	572.4	307	558.0	73.8	484.2	1.58

BOND WORK INDEX FORMULA

Wi = $(44.5 \times 1.102) / (Pi^{-23} \times Gpb^{-82} \times (10/\sqrt{P} - 10/\sqrt{F}))$

Pi = Sieve Size Tested.	106 µm
Gbp = Net undersize produced per revolution of mill.	1.58 g
P = 80% Passing size of test product.	87 µm
F = 80% Passing size of test feed.	2369 µm

BOND BALL WORK INDEX (Wi) 13.3 kw-hr/tonne

Particle Size			Feed to Cycle 2	1	Equilib	rium Cycle Un	dersize
T artic		Weight (g)	Weight	Cumulative	Weight (g)	Weight	Cumulative
mesh	μm	Retained	% Retained	% Passing	Retained	% Retained	% Passing
6 Mesh	3360	16.50	3.35	96.6	-	-	-
7 Mesh	2800	32.80	6.66	90.0	-	-	-
8 Mesh	2360	50.30	10.21	79.8	-	-	-
9 Mesh	2000	44.10	8.95	70.8	-	-	-
10 Mesh	1700	34.00	6.90	63.9	-	-	-
12 Mesh	1400	39.10	7.94	56.0	-	-	-
14 Mesh	1180	25.20	5.12	50.9	-	-	-
20 Mesh	850	41.10	8.35	42.5	-	-	-
28 Mesh	600	32.40	6.58	35.9	-	-	-
35 Mesh	425	30.40	6.17	29.8	-	-	-
48 Mesh	300	25.00	5.08	24.7	-	-	-
65 Mesh	212	21.20	4.30	20.4	-	-	-
100 Mesh	150	19.30	3.92	16.5	-	-	-
150 Mesh	106	17.60	3.57	12.9	5.70	5.50	94.5
170 Mesh	90	-	-	-	12.30	11.87	82.6
200 Mesh	75	-	-	-	14.70	14.19	68.4
270 Mesh	53	-	-	-	17.00	16.41	52.0
325 Mesh	45	-	-	-	8.20	7.92	44.1
400 Mesh	38	-	-	-	5.80	5.60	38.5
TOTAL		492.5	100.00	**	103.6	100.00	**

TABLE IV-2B BOND BALL SCREEN ANALYSIS KM4508 ED Composite

K80 = 2369µm

K80 = 87µm

APPENDIX V - KM4508

SPECIAL DATA

INDEX

<u>TABLE</u>		PAGE
V-1	Duplicate Head Assay Data	1
V-2	Statistical Analysis of Head Assays	2
V-3	Comparative Concentrate Assays	3
CERTIF	ICATES	

ALS Certificate VA15058125

TABLE V-1A
DUPLICATE HEAD ASSAY DATA

Sample		Elements for Assay - percent or g/tonne									
Gample	Cu	CuOx	CuCN	CuRes	Fe	S	Ag	Au			
ED Composite HD1	2.16	0.099	0.16	1.77	31.5	2.84	7	1.28			
ED Composite HD2	2.15	-	-	-	31.5	2.77	6	1.36			
Average	2.16	7	1.32								

Note: Ag and Au is reported in g/tonne, all others in percent.

Toot	EI	ements for A	Assay - perc	ent or g/ton	ne	
Test	Cu	Fe	S	Ag	Au	
1	2.24	31.4	2.74	7	1.62	
2	2.14	32.4	2.70	6	1.47	
3	2.22	32.0	2.68	7	1.49	
4	2.34	31.6	2.75	6	1.63	
5	2.05	32.1	2.70	7	1.52	
6	2.14	32.7	2.71	7	1.54	
8	2.25	32.5	2.72	7	1.47	
9	2.25	32.4	2.66	7	1.57	
10	2.28	32.4	2.73	7	1.50	
13	2.22	31.2	2.67	7	1.43	
14	2.25	30.1	2.71	7	1.51	
15	2.37	31.2	3.03	8	1.43	
16	2.31	31.6	3.01	7	1.50	
17	2.39	31.5	3.10	7	1.55	
Average	2.25	31.8	2.78	7	1.52	
Measured	2.16	31.5	2.81	7	1.32	

TABLE V-2 STATISTICAL ANALYSIS OF HEAD ASSAYS ED Composite

Note: Au and Ag are reported in g/tonne, all others in percent.

	Test	Copper -	- percent
	Test	AAS	Titre
8		22.2	22.5
9		22.5	23.4
10		25.2	25.9
13		30.2	31.8
14		28.4	29.8
16		21.3	22.6
17	Cu Con I	20.6	21.8
	Cu Con II	21.5	22.3
	Cu Con III	21.8	22.0
	Cu Con IV	21.4	22.4
	Cu Con V	21.4	22.1

TABLE V-3A COMPARATIVE COPPER CONCENTRATE ASSAYS

TABLE V-3B COMPARATIVE IRON CONCENTRATE ASSAYS

Tost	Iron - percent					
Test	AAS	Titre				
5	65.4	68.4				
7	66.4	67.0				
11	53.2	53.3				
12	53.8	53.9				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25- APR- 2015 Account: KRL

CERTIFICATE VA15058125

Project: KM4508

P.O. No.: A1512

This report is for 1 Pulp sample submitted to our lab in Vancouver, BC, Canada on 21- APR- 2015.

The following have access to data associated with this certificate:

ALS METALLURGY	SIMONE BAWTREE	BRENDA TREMBLAY

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 24	Pulp Login - Rcd w/o Barcode	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	

ME- MS61	48 element four acid ICP- MS	
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Cu- OG62	Ore Grade Cu - Four Acid	VARIABLE

To: ALS METALLURGY, DIV OF ALS CANADA LTD ATTN: BRENDA TREMBLAY 2957 BOWERS PL KAMLOOPS BC V1S 1W5

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

CERTIFICATE OF ANALYSIS

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25- APR- 2015 Account: KRL

VA15058125

Project: KM4508

ME-MS61 ME- MS61 ME- MS61 ME- MS61 ME- MS61 ME- MS61 ME- MS61 ME-MS61 ME- MS61 ME- MS61 ME- MS61 WEI- 21 ME- MS61 ME- MS61 ME- MS61 Method Cr Cs Cu Fe Recvd Wt. Cd Co Ag Al As Ba Be Bi Ca Ce Analyte % % ppm % ppm ppm ppm ppm ppm ppm ppm Units kg ppm ppm ppm Sample Description 0.01 0.02 0.01 0.1 1 0.05 0.2 0.01 0.05 0.01 LOR 0.02 0.01 0.01 0.2 10 >10000 32.4 10 0.18 7.12 13.60 0.81 14.90 78.4 194 0.12 KM4508 ED Comp Hd 1 0.02 7.63 0.91 47.9

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25- APR- 2015 Account: KRL

Project: KM4508

Sample Description	Method Analyte Units LOR	ME-MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS61 Pb ppm 0.5
KM4508 ED Comp Hd	1	16.10	0.35	0.3	2.83	0.01	6.9	1.3	0.45	2420	13.05	0.01	1.4	17.6	90	8.2
							<u>.</u>									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25- APR- 2015 Account: KRL

Project: KM4508

Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME- MS61 V ppm 1
KM4508 ED Comp Hd	1	0.4	0.003	2.87	1.06	1.0	36	14.3	7.1	0.06	2.96	0.8	0.028	0.03	6.9	18

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25- APR- 2015 Account: KRL

Project: KM4508

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Cu- OG62 Cu % 0.001	
KM4508 ED Comp Hd	1	99.8	2.6	134	9.0	2.34	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: ALS METALLURGY, DIV OF ALS CANADA LTD 2957 BOWERS PL KAMLOOPS BC V1S 1W5

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25- APR- 2015 Account: KRL

Project: KM4508

CERTIFICATE COMMENTS	
ANALYTICAL COMMENTS REE's may not be totally soluble in this method. ME- MS61	
LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Cu- OG62 LOG- 24 ME- MS61 ME- OG62 WEI- 21 WEI- 21 ME- MS61 ME- OG62	
: :	CERTIFICATE COMMENTS REE's may not be totally soluble in this method. ME- MS61 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Cu- OC62 LOG- 24 ME- MS61 ME- OC62 WEI- 21

APPENDIX VI – KM4508

MINERALOGICAL DATA

INDEX

<u>TABLE</u>		PAGE
1	KM4508 TMS Data – ED Composite >106µm	1
2	KM4508 TMS Data – ED Composite <106>38µm	5
3	KM4508 TMS Data – ED Composite <38μm	9
4	KM4508 Spectra Data – ED Composite >106µm	
5	KM4508 Spectra Data – ED Composite <106>38μm	
6	KM4508 Spectra Data – ED Composite <38µm	19

<u>TABLE 1A</u> <u>DISTRIBUTION OF GOLD MINERALS BY AREA</u> <u>KM4508 ED Composite, >106µm</u>

Sample -	% Gold Bearing Minerals				
	Au	Au/El	AuAgTe		
ED Composite	4	73	23		

Notes: a) Au-Gold, Au/El-Gold/Electrum, AuAgTe-Gold Silver Telluride.

TABLE 1B AVERAGE SIZE OF THE GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, >106µm

Particles	35 Mode of Occurrence		Average Projected Area Diameter - microns						Area %
Observed	AuM	Ср	Sp	BiM	Ру	FeOx	Gn	Gold	
1	Gold Adhesion Inclusion Multiphase	6	-	-	13	-	-	139	<1
1	Gold/Electrum Adhesion Multphase	7	20	19	-	127	-	22	<1
5	Gold/Electrum Inclusion Multiphase	7	24	-	-	-	78	77	<1
1	Gold/Electrum Adhesion Inclusion Multiphase	17	17	-	-	73	41	129	1
1	AuAgTe Gangue Inclusion Binary	5	-	-	-	-	89	45	<1
1	AuAgTe Gangue Adhesion Inclusion Binary	13	-	-	-	-	35	185	<1

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalcopyrite, Sp-Sphalerite, BiM-Bismuth Tellurium Bearing Mineral, Py-Pyrite, FeOx-Iron Oxides, Gn-Gangue.

b) Projected area diameter is the diameter of a circle in mineralogical terms.

c) AuAgTe-Gold Silver Telluride.

TABLE 1C DISTRIBUTION OF GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, >106µm

Particles	Mode of Occurrence	Lib	Locked in E	MP	
Observed		Elb	Ср	Gn	IVIE
1	Gold	-	-	-	100
7	Gold/Electrum	-	-	-	100
2	Gold Silver Telluride	-	-	100	-
10	Total Gold Bearing Minerals	-	-	20	80

Notes: a) Lib-Liberated, Cp-Chalcopyrite, Gn-Gangue, MP-Multiphase.

TABLE 1D DISTRIBUTION OF GOLD AREA BY CLASS OF ASSOCIATION KM4508 ED Composite, >106µm

Particles Observed	Mode of Occurrence	Lib	Locked in E	MD	
		LID	Ср	Gn	IVIE
1	Gold	-	-	-	4
7	Gold/Electrum	-	-	-	73
2	Gold Silver Telluride	-	-	23	-
10	Total Gold Bearing Minerals	-	-	23	77

Notes: a) Lib-Liberated, Cp-Chalcopyrite, Gn-Gangue, MP-Multiphase.

TABLE 1E DISTRIBUTION OF GOLD AREA BY CLASS OF ASSOCIATION - ADJUSTED KM4508 ED Composite, >106µm

Locked in Binary With: Particles Mode of Occurrence Lib* MP Observed Ср Gn 1 Gold --4 -Gold/Electrum 73 7 ---2 Gold Silver Telluride 23 ---10 Total Gold Bearing Minerals 23 77 -

Notes: a) Lib*-Particles with greater than 50 percent area gold, Cp-Chalcopyrite, Gn-Gangue, MP-Multiphase.

TABLE 1F SUMMARY OF QEMSCAN TRACE MINERAL SEARCH KM4508 ED Composite, >106µm

Sample	ED Composite
Size Fraction	>106µm
Number of Pucks Scanned	22
Backscattered Electrons (BSE) Limit	100
Total Searched Particles	2.66 x 10 ⁵
Number of Gold Occurrences Detected by Qemscan	10
Mean Projected Diameter of Gold	8.0 µm
Assay Measured Au	1.0 g/t

Note: a) This data is as found at 2 µm resolution.

 TABLE 1G

 STATUS OF GOLD OCCURRENCES BY CLASS OF ASSOCIATION

 KM4508 ED Composite, >106µm

Portiolo	Mode of Occurrence	Projected Area Diameter - microns						Area %	Volume	
Failicle	Mode of Occurrence	AuM	Ср	Sp	BiM	Ру	FeOx	Gn	Gold	of Gold
1	AuAgTe Gangue Adhesion Inclusion Binary	13	-	-	-	-	35	185	<1	1119
2	Gold/Electrum Inclusion Multiphase	6	19	-	-	-	13	60	1	107
3	AuAgTe Gangue Inclusion Binary	5	-	-	-	-	89	45	<1	50
4	Gold/Electrum Inclusion Multiphase	6	24	-	-	-	121	14	<1	135
5	Gold Adhesion Inclusion Multiphase	6	-	-	13	-	-	139	<1	100
6	Gold/Electrum Inclusion Multiphase	4	46	-	-	-	104	57	<1	39
7	Gold/Electrum Inclusion Multiphase	12	11	-	-	-	106	90	1	870
8	Gold/Electrum Inclusion Multiphase	5	19	-	-	-	44	167	<1	65
9	Gold/Electrum Adhesion Inclusion Multiphase	17	17	-	-	73	41	129	1	2684
10	Gold/Electrum Adhesion Multphase	7	20	19	-	127	-	22	<1	152

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalcopyrite, Sp-Sphalerite, BiM-Bismuth Tellurium Bearing Mineral, Py-Pyrite, FeOx-Iron Oxides, Gn-Gangue.

b) Projected area diameter is the diameter of a circle in mineralogical terms.

c) Volume of Gold is expressed as μm^3 . Volume data assumes particles are spherical in shape.

d) AuAgTe-Gold Silver Telluride.

<u>QEMSCAN BACKSCATTER IMAGE 1</u> LAS MINAS – ED COMPOSITE, >106µm <u>KM4508</u>

*AuM-Gold Bearing Mineral, Cp-Chalcopyrite, BiM-Bismuth Tellurium Bearing Mineral, Py-Pyrite, FeOx-Iron Oxides, Gn-Gangue.

TABLE 2A DISTRIBUTION OF GOLD MINERALS BY AREA

KM4508 ED Composite, <106>38µm

Sample	% Gold Bearing Minerals			
Sample	Au	Au/El	Oth	
ED Composite	6	94	<1	

Notes: a) Au-Gold, Au/El-Gold/Electrum, Oth-Unresolved Gold Mineral.

TABLE 2B AVERAGE SIZE OF THE GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, <106>38µm

Particles	s Mode of Occurrence		Average Projected Area Diameter - microns					
Observed			Ср	BiM	Ру	FeOx	Gn	Gold
3	Gold Inclusion Multiphase	5	25	2	39	11	23	<1
1	Gold/Electrum Chalcopyrite Adhesion Binary	2	46	-	-	-	-	<1
3	Gold/Electrum Chalcopyrite Inclusion Binary	4	88	-	-	-	-	<1
1	Gold/Electrum Adhesion Multiphase	31	22	-	-	-	59	20
2	Gold/Electrum Inclusion Multiphase	3	19	-	-	56	48	<1
1	Gold/Electrum Adhesion Inclusion Multiphase	2	26	-	-	35	11	<1
1	Unresolved Gold Inclusion Multiphase	2	70	17	-	75	44	<1

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalcopyrite, BiM-Bismuth Tellurium Bearing Mineral, Py-Pyrite, FeOx-Iron Oxides, Gn-Gangue. b) Projected area diameter is the diameter of a circle in mineralogical terms.

TABLE 2C DISTRIBUTION OF GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, <106>38µm

Particles Observed Mode of Occurrence	Mada of Oppurrance	Lib	Locked in E	MD	
	Mode of Occurrence	LID	Ср	Gn	IVIP
3	Gold	-	-	-	100
8	Gold/Electrum	-	50	-	50
1	Unresolved Gold	-	-	-	100
12	Total Gold Bearing Minerals	-	33	-	67

Notes: a) Lib-Liberated, Cp-Chalcopyrite, Gn-Gangue, MP-Multiphase.

TABLE 2D DISTRIBUTION OF GOLD AREA BY CLASS OF ASSOCIATION KM4508 ED Composite, <106>38µm

Particles Observed Mode of Occu	Mada of Oppurrance	Lib	Locked in E	MD	
	Mode of Occurrence	LID	Ср	Gn	IVIP
3	Gold	-	-	-	6
8	Gold/Electrum	-	4	-	89
1	Unresolved Gold	-	-	-	1
12	Total Gold Bearing Minerals	-	4	-	96

Notes: a) Lib-Liberated, Cp-Chalcopyrite, Gn-Gangue, MP-Multiphase.

TABLE 2E DISTRIBUTION OF GOLD AREA BY CLASS OF ASSOCIATION - ADJUSTED KM4508 ED Composite, <106>38µm

Particles Observed	Mode of Occurence	Lib	Locked in E	MD	
		LID	Ср	Gn	IVIE
3	Gold	-	-	-	6
8	Gold/Electrum	-	4	-	89
1	Unresolved Gold	-	-	-	1
12	Total Gold Bearing Minerals	-	4	-	96

Notes: a) Lib*-Particles with greater than 50 percent area gold, Cp-Chalcopyrite, Gn-Gangue, MP-Multiphase.

TABLE 2F SUMMARY OF QEMSCAN TRACE MINERAL SEARCH

KM4508 ED Composite, <106>38µm

Sample	ED Composite
Size Fraction	<106>38µm
Number of Pucks Scanned	15
Backscattered Electrons (BSE) Limit	100
Total Searched Particles	8.57 x 10 ⁵
Number of Gold Occurrences Detected by Qemscan	12
Mean Projected Diameter of Gold	5.8 µm
Assay Measured Au	1.7 g/t

Note: a) This data is as found at 2 μm resolution.

TABLE 2G STATUS OF GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, <106>38µm

Dortiolo	Made of Occurrence		Projecte	d Area D	iameter	- microns	;	Area %	Volume
Particle	Mode of Occurrence	AuM	Ср	BiM	Ру	FeOx	Gn	Gold	of Gold
1	Gold/Electrum Chalcopyrite Inclusion Binary	4	146	-	-	-	-	<1	46
2	Gold/Electrum Chalcopyrite Inclusion Binary	4	54	-	-	-	-	1	29
3	Gold/Electrum Adhesion Inclusion Multiphase	2	26	-	-	35	11	<1	8
4	Gold/Electrum Adhesion Multiphase	31	22	-	-	-	59	20	15907
5	Gold/Electrum Inclusion Multiphase	3	26	-	-	6	81	<1	16
6	Gold/Electrum Inclusion Multiphase	3	13	-	-	105	16	<1	12
7	Unresolved Gold Inclusion Multiphase	2	70	17	-	75	44	<1	7
8	Gold/Electrum Chalcopyrite Inclusion Binary	3	64	-	-	-	-	<1	11
9	Gold Inclusion Multiphase	6	18	5	84	-	24	<1	88
10	Gold/Electrum Chalcopyrite Adhesion Binary	2	46	-	-	-	-	<1	8
11	Gold Inclusion Multiphase	4	49	-	-	32	45	<1	33
12	Gold Inclusion Multiphase	4	8	-	34	-	-	1	41

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalcopyrite, BiM-Bismuth Tellurium Bearing Mineral, Py-Pyrite, FeOx-Iron Oxides, Gn-Gangue. b) Projected area diameter is the diameter of a circle in mineralogical terms.

c) Volume of Gold is expressed as μm^3 . Volume data assumes particles are spherical in shape.

QEMSCAN BACKSCATTER IMAGE 2 LAS MINAS - ED COMPOSITE, <106>38µm KM4508

Particle 9

Ср

Gn

Particle 11

FeOx-

ALS)Metallurqy

TABLE 3A DISTRIBUTION OF GOLD MINERALS BY AREA

KM4508 ED Composite, <38µm

Sampla	% Gold Bearing Minerals				
Sample	Au	Au/El			
ED Composite	4	96			

Notes: a) Au-Gold, Au/El-Gold/Electrum.

TABLE 3B AVERAGE SIZE OF THE GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, <38µm</td>

Particles	Mada at Occurrance	Averag	Average Projected Area Diameter - microns				Area %
Observed	wode of Occurrence	AuM	Ср	Py	FeOx	Gn	Gold
1	Gold Pyrite Inclusion Binary	3	-	12	-	-	6
6	Liberated Gold/Electrum	4	-	-	-	-	100
3	Gold/Electrum Chalcopyrite Adhesion Binary	5	12	-	-	-	15
1	Gold/Electrum Iron Oxide Inclusion Binary		-	-	11	-	2
1	Gold/Electrum Gangue Adhesion Binary	6	-	-	-	20	7
2	Gold/Electrum Inclusion Multiphase	2	25	22	-	-	<1

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalcopyrite, Py-Pyrite, FeOx-Iron Oxide, Gn-Gangue.

b) Projected area diameter is the diameter of a circle in mineralogical terms.

TABLE 3C DISTRIBUTION OF GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, <38µm</td>

Particles Observed	Mode of Occurrence	Lib	L	ocked in E	Binary With:		MD
	wode of Occurrence	LID	Ср	Ру	FeOx	Gn	IVIP
1	Gold	-	-	100	-	-	-
13	Gold/Electrum	46	23	-	8	8	15
14	Total Gold Bearing Minerals	43	22	7	7	7	14

Notes: a) Lib-Liberated, Cp-Chalcopyrite, Py-Pyrite, FeOx-Iron Oxide, Gn-Gangue, MP-Multiphase.

TABLE 3D DISTRIBUTION OF GOLD AREA BY CLASS OF ASSOCIATION KM4508 ED Composite, <38µm

Particles	Mode of Occurrence	Lib	L	ocked in E	Binary Witl	n:	MD
Observed		LID	Ср	Py	FeOx	Gn	IVII
1	Gold	-	-	4	-	-	-
13	Gold/Electrum	44	35	-	1	12	4
14	Total Gold Bearing Minerals	44	35	4	1	12	4

Notes: a) Lib-Liberated, Cp-Chalcopyrite, Py-Pyrite, FeOx-Iron Oxide, Gn-Gangue, MP-Multiphase.

TABLE 3E DISTRIBUTION OF GOLD AREA BY CLASS OF ASSOCIATION - ADJUSTED KM4508 ED Composite, <38µm</td>

Particles	Mode of Occurrence	Lib*	L	ocked in E	Binary Witl	ו:	MD	
Observed	wode of Occurrence	LID	Ср	Py	FeOx	Gn	IVIE	
1	Gold	-	-	4	-	-	-	
13	Gold/Electrum	62	17	-	1	12	4	
14	Total Gold Bearing Minerals	62	17	4	1	12	4	

Notes: a) Lib*-Particles with greater than 50 percent area gold, Cp-Chalcopyrite, Py-Pyrite, FeOx-Iron Oxide, Gn-Gangue, MP-Multiphase.

TABLE 3F

SUMMARY OF QEMSCAN TRACE MINERAL SEARCH

KM4508 ED Composite, <38µm

Sample	ED Composite
Size Fraction	<38µm
Number of Pucks Scanned	15
Backscattered Electrons (BSE) Limit	100
Total Searched Particles	3.33×10^7
Number of Gold Occurrences Detected by Qemscan	14
Mean Projected Diameter of Gold	4.1 μm
Assay Measured Au	2.0 g/t

Note: a) This data is as found at 2 µm resolution.

TABLE 3G STATUS OF GOLD OCCURRENCES BY CLASS OF ASSOCIATION KM4508 ED Composite, <38µm</td>

Dortiolo	Made of Occurrence	Pr	ojected A	ea Diame	ter - micro	ons	Area %	Volume
Particle	Mode of Occurrence	AuM	Ср	Py	FeOx	Gn	Gold	of Gold
1	Gold/Electrum Inclusion Multiphase	2	38	21	-	-	<1	6
2	Gold/Electrum Chalcopyrite Adhesion Binary	7	6	-	-	-	59	165
3	Liberated Gold/Electrum	3	-	-	-	-	100	21
4	Liberated Gold/Electrum	5	-	-	-	-	100	74
5	Liberated Gold/Electrum	5	-	-	-	-	100	53
6	Gold Pyrite Inclusion Binary	3	-	12	-	-	6	16
7	Gold/Electrum Inclusion Multiphase	2	12	23	-	-	1	7
8	Gold/Electrum Iron Oxide Inclusion Binary	1	-	-	11	-	2	1
9	Liberated Gold/Electrum	4	-	-	-	-	100	26
10	Gold/Electrum Chalcopyrite Adhesion Binary	4	10	-	-	-	16	36
11	Liberated Gold/Electrum	4	-	-	-	-	100	41
12	Liberated Gold/Electrum	4	-	-	-	-	100	59
13	Gold/Electrum Chalcopyrite Adhesion Binary	5	20	-	-	-	6	72
14	Gold/Electrum Gangue Adhesion Binary	6	-	-	-	20	7	94

Notes: a) AuM-Gold Bearing Mineral, Cp-Chalcopyrite, Py-Pyrite, FeOx-Iron Oxide, Gn-Gangue.

b) Projected area diameter is the diameter of a circle in mineralogical terms.

c) Volume of Gold is expressed as μm^3 . Volume data assumes particles are spherical in shape.

<u>QEMSCAN BACKSCATTER IMAGE 3</u> <u>LAS MINAS – ED COMPOSITE, <38µm</u> <u>KM4508</u>

Particle 7

Particle 11

P٧

25 µm

*AuM-Gold Bearing Mineral, Cp-Chalcopyrite, Py-Pyrite, Gn-Gangue.

Particle	Flement	Sarias	Weight	Normal Weight	Normal Atomic	Error in
1 article	Liement	Genes	Percent	Percent	Percent	Percent
	Gold	L-series	0.6	1.5	0.9	0.0
1	Silver	L-series	23.0	56.9	61.3	0.7
	Tellurium	L-series	16.8	41.6	37.8	0.5
		Sum:	40.5	100	100	
Particle	Element	Sorios	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
2	Gold	L-series	63.4	97.3	95.1	1.6
2	Silver	L-series	1.8	2.7	4.9	0.1
		Sum:	65.2	100	100	
Dortiolo	Flomont	Sorioo	Weight	Normal Weight	Normal Atomic	Error in
Farticle	Element	Selles	Percent	Percent	Percent	Percent
4	Gold	L-series	47.6	85.6	76.4	1.2
4	Silver	L-series	8.0	14.4	23.6	0.3
		Sum:	55.7	100	100	
Particla	Element	Sorios	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
5	Gold	L-series	98.8	100.0	100.0	2.5
		Sum:	98.8	100	100	
Particle	Element	Sorios	Weight	Normal Weight	Normal Atomic	Error in
1 article	Liement	Genes	Percent	Percent	Percent	Percent
6	Gold	L-series	50.3	88.1	80.2	1.3
0	Silver	L-series	6.8	11.9	19.8	0.2
		Sum:	57.2	100	100	
Particle	Element	Sorios	Weight	Normal Weight	Normal Atomic	Error in
1 article	Liement	Genes	Percent	Percent	Percent	Percent
7	Gold	L-series	49.6	88.2	80.4	1.3
1	Silver	L-series	6.6	11.8	19.6	0.2
		Sum:	56.2	100	100	
Particlo	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
0	Gold	L-series	54.7	89.1	81.7	1.4
0	Silver	L-series	6.7	10.9	18.3	0.2
		Sum:	61.4	100	100	

<u>TABLE 4</u> <u>QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES</u> <u>KM4508 ED Composite, >106µm</u>

Particle	Flement	Series	Weight	Normal Weight	Normal Atomic	Error in	
1 article	Liement	0enes	Percent	Percent	Percent	Percent	
9	Gold	L-series	67.5	94.1	89.7	1.7	
	Silver	L-series	4.2	5.9	10.3	0.2	
		Sum:	71.7	100	100		
Particle	Flomont	Element	ot Series	Weight	Normal Weight	Normal Atomic	Error in
rance	Liement	Series	Percent	Percent	Percent	Percent	
10	Gold	L-series	43.0	83.1	72.9	1.1	
10	Silver	L-series	8.8	16.9	27.1	0.3	
		Sum:	51.7	100	100		

TABLE 4 CONTINUED QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES

FIGURE 1 QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES

Dortiolo	Floment	Cariaa	Weight	Normal Weight	Normal Atomic	Error in
Particle	Element	Series	Percent	Percent	Percent	Percent
1	Gold	L-series	63.0	91.2	85.0	1.6
1	Silver	L-series	6.1	8.8	15.0	0.2
		Sum:	69.1	100	100	
Particla	Element	Sorios	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
2	Gold	L-series	52.7	88.4	80.6	1.4
2	Silver	L-series	6.9	11.6	19.4	0.2
		Sum:	59.6	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
2	Gold	L-series	45.0	80.1	68.8	1.2
5	Silver	L-series	11.2	19.9	31.2	0.4
		Sum:	56.2	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
4	Gold	L-series	64.5	92.6	87.3	1.7
4	Silver	L-series	5.1	7.4	12.7	0.2
		Sum:	69.6	100	100	
Particle	Flement	Series	Weight	Normal Weight	Normal Atomic	Error in
1 article	Element	Genes	Percent	Percent	Percent	Percent
5	Gold	L-series	43.1	85.5	76.4	1.1
	Silver	L-series	7.3	14.5	23.6	0.3
		Sum:	50.4	100	100	
Particle	Flement	Series	Weight	Normal Weight	Normal Atomic	Error in
1 artiolo	Liomont	001100	Percent	Percent	Percent	Percent
6	Gold	L-series	52.1	85.9	76.9	1.4
	Silver	L-series	8.6	14.1	23.1	0.3
		Sum:	60.6	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
	Liomont	Contoo	Percent	Percent	Percent	Percent
8	Gold	L-series	48.2	91.5	85.5	1.3
	Silver	L-series	4.5	8.5	14.5	0.2
		Sum:	52.7	100	100	

<u>TABLE 5</u> <u>QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES</u> <u>KM4508 ED Composite, <106>38µm</u>

Dortiolo	Element	Sorioo	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
9	Gold	L-series	70.7	100.0	100.0	1.8
		Sum:	70.7	100	100	
Particle	Element	Sorios	Weight	Normal Weight	Normal Atomic	Error in
1 ditiolo		Genes	Percent	Percent	Percent	Percent
10	Gold	L-series	46.2	85.8	76.8	1.2
10	Silver	L-series	7.6	14.2	23.2	0.3
		Sum:	53.8	100	100	
Particla	Flomont	Sorios	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
11	Gold	L-series	78.8	100.0	100.0	2.0
		Sum:	78.8	100	100	
Dortiolo	Element	Sorioo	Weight	Normal Weight	Normal Atomic	Error in
Faiticle	Liement	Selles	Percent	Percent	Percent	Percent
12	Gold	L-series	66.3	100.0	100.0	1.7
		Sum:	66.3	100	100	

TABLE 5 CONTINUED QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES

FIGURE 2 QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES PARTICLE 2: GOLD/ELECTRUM

Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
1	Gold	L-series	51.3	89.6	82.5	1.3
	Silver	L-series	5.9	10.4	17.5	0.2
		Sum:	57.3	100	100	
Particle		Series	Weight	Normal Weight	Normal Atomic	Error in
	Element		Percent	Percent	Percent	Percent
2	Gold	L-series	51.9	81.4	70.5	1.4
	Silver	L-series	11.9	18.6	29.5	0.4
		Sum:	63.7	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
3	Gold	L-series	45.1	82.0	71.3	1.2
	Silver	L-series	9.9	18.0	28.7	0.3
		Sum:	55.0	100	100	
Particlo	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
Particle			Percent	Percent	Percent	Percent
4	Gold	L-series	61.0	93.2	88.3	1.6
4	Silver	L-series	4.4	6.8	11.7	0.2
		Sum:	65.4	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
F	Gold	L-series	49.6	78.5	66.6	1.3
5	Silver	L-series	13.6	21.5	33.4	0.5
		Sum:	63.2	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
6	Gold	L-series	64.9	100.0	100.0	1.7
		Sum:	64.9	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
7	Gold	L-series	49.7	88.3	80.5	1.3
	Silver	L-series	6.6	11.7	19.5	0.2
		Sum:	56.3	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
8	Gold	L-series	43.2	84.7	75.2	1.1
	Silver	L-series	7.8	15.3	24.8	0.3
		Sum:	51.0	100	100	

<u>TABLE 6</u> <u>QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES</u> <u>KM4508 ED Composite, <38µm</u>

Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
9	Gold	L-series	58.1	93.9	89.5	1.5
	Silver	L-series	3.8	6.1	10.5	0.1
		Sum:	61.9	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
10	Gold	L-series	45.1	86.6	77.9	1.2
	Silver	L-series	7.0	13.4	22.1	0.2
		Sum:	52.2	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
11	Gold	L-series	54.2	87.8	79.7	1.4
	Silver	L-series	7.6	12.2	20.3	0.3
		Sum:	61.7	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
12	Gold	L-series	60.2	91.7	85.8	1.6
	Silver	L-series	5.5	8.3	14.2	0.2
		Sum:	65.7	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
13	Gold	L-series	49.3	86.6	77.9	1.3
	Silver	L-series	7.7	13.4	22.1	0.3
		Sum:	57.0	100	100	
Particle	Element	Series	Weight	Normal Weight	Normal Atomic	Error in
			Percent	Percent	Percent	Percent
14	Gold	L-series	59.2	90.9	84.6	1.5
	Silver	L-series	5.9	9.1	15.4	0.2
		Sum:	65.0	100.0	100.0	

TABLE 6 CONTINUED QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES

FIGURE 3 QEMSCAN X-RAY ANALYSIS ON GOLD PARTICLES